Zcash Protocol Specification
Version 2024.5.1-365-g593589 [NUS5]

Daira-Emma Hopwood'
Sean Bowe' — Taylor Hornby' — Nathan Wilcox'

June 30, 2025

Abstract. Zcash is an implementation of the Decentralized Anonymous Payment scheme Zerocash, with
security fixes and improvements to performance and functionality. It bridges the existing transparent
payment scheme used by Bitcoin with a shielded payment scheme secured by zero-knowledge succinct
non-interactive arguments of knowledge (zk-SNARKs). It attempted to address the problem of mining
centralization by use of the Equihash memory-hard proof-of-work algorithm.

This specification defines the Zcash consensus protocol at launch, and after each of the upgrades
codenamed Overwinter, Sapling, Blossom, Heartwood, Canopy, and NUS5. It is a work in progress.
Protocol differences from Zerocash and Bitcoin are also explained.
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1 Introduction

Zcash is an implementation of the Decentralized Anonymous Payment scheme Zerocash [BCGGMTV2014], with
security fixes and improvements to performance and functionality. It bridges the existing transparent payment
scheme used by Bitcoin [Nakamoto2008] with a shielded payment scheme secured by zero-knowledge succinct
non-interactive arguments of knowledge (zk-SNARKSs).

In this document, technical terms for concepts that play an important réle in Zcash are written in slanted text,
which links to an index entry. Italics are used for emphasis and for references between sections of the document.
The symbol § precedes section numbers in cross-references.

The key words MUST, MUST NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL in this document
are to be interpreted as described in [RFC-2119] when they appear in ALL CAPS. These words may also appear in
this document in lower case as plain English words, absent their normative meanings.

The most significant changes from the original Zerocash are explained in § 8 ‘Differences from the Zerocash paper’
on p.138.

Changes specific to the Overwinter upgrade are highlighted in bright blue.

Changes specific to the Sapling upgrade following Overwinter are highlighted in green.

Changes specific to the Blossom upgrade following Sapling are highlighted in red.

Changes specific to the Heartwood upgrade following Blossom are highlighted in orange.

Changes specific to the Canopy upgrade following Heartwood are highlighted in purple.

Changes specific to the NU5 upgrade following Canopy are highlighted in slate blue.

All of these are also changes from Zerocash. The name Sprout is used for the Zcash protocol prior to Sapling (both

before and after Overwinter), and in particular its shielded protocol.

This specification is structured as follows:

- Notation — definitions of notation used throughout the document;

- Concepts — the principal abstractions needed to understand the protocol;

- Abstract Protocol — a high-level description of the protocol in terms of ideal cryptographic components;
- Concrete Protocol — how the functions and encodings of the abstract protocol are instantiated;

- Network Upgrades — the strategy for upgrading the Zcash protocol.

- Consensus Changes from Bitcoin — how Zcash differs from Bitcoin at the consensus layer, including the
Proof of Work;

- Differences from the Zerocash protocol — a summary of changes from the protocol in [BCGGMTV2014].
- Appendix: Circuit Design — details of how the Sapling circuits are defined as quadratic constraint programs.

- Appendix: Batching Optimizations — improvements to the efficiency of validating multiple signatures and
verifying multiple proofs.

1.1 Caution

Zcash security depends on consensus. Should a program interacting with the Zcash network diverge from con-
sensus, its security will be weakened or destroyed. The cause of the divergence doesn’t matter: it could be a bug
in your program, it could be an error in this documentation which you implemented as described, or it could be
that you do everything right but other software on the network behaves unexpectedly. The specific cause will not
matter to the users of your software whose wealth is lost.

Having said that, a specification of intended behaviour is essential for security analysis, understanding of the
protocol, and maintenance of Zcash and related software. If you find any mistake in this specification, please file an
issue at https://github.com/zcash/zips/issues or contact <security@z.cash>.
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1.2 High-level Overview

The following overview is intended to give a concise summary of the ideas behind the protocol, for an audience
already familiar with block chain-based cryptocurrencies such as Bitcoin. It is imprecise in some aspects and is not
part of the normative protocol specification. This overview applies to Sprout, Sapling, and Orchard, differences in
the cryptographic constructions used notwithstanding.

All value in Zcash belongs to some chain value pool. There is a single transparent chain value pool, and also a
chain value pool for each shielded protocol (Sprout or Sapling or Orchard). Transfers of transparent value work
essentially as in Bitcoin and have the same privacy properties. Value in a shielded chain value pool is carried by
notes?, which specify an amount and (indirectly) a shielded payment address, which is a destination to which notes
can be sent. As in Bitcoin, this is associated with a private key that can be used to spend notes sent to the address;
in Zcash this is called a spending key.

To each note there is cryptographically associated a note commitment. Once the transaction creating a note has
been mined, the note is associated with a fixed note position in a tree of note commitments, and with a nullifier”
unique to that note. Computing the nullifier requires the associated private spending key (or the nullifier deriving
key for Sapling or Orchard notes). It is infeasible to correlate the note commitment or note position with the
corresponding nullifier without knowledge of at least this key. An unspent valid note, at a given point on the block
chain, is one for which the note commitment has been publically revealed on the block chain prior to that point,
but the nullifier has not.

A transaction can contain transparent inputs, outputs, and scripts, which all work as in Bitcoin [Bitcoin-Protocol]. It
also can include JoinSplit descriptions, Spend descriptions, Output descriptions and Action descriptions. Together
these describe shielded transfers which take in shielded input notes, and/or produce shielded output notes. (For
Sprout, each JoinSplit description handles up to two shielded inputs and up to two shielded outputs. For Sapling,
each shielded input or shielded output has its own description. For Orchard, each Action description handles up
to one shielded input and up to one shielded output.) It is also possible for value to be transferred between chain
value pools, either transparent or shielded; this always reveals the amount transferred.

In each shielded transfer, the nullifiers of the input notes are revealed (preventing them from being spent again)
and the commitments of the output notes are revealed (allowing them to be spent in future). A transaction also
includes computationally sound zk-SNARK proofs and signatures, which prove that all of the following hold except
with insignificant probability:

For each shielded input,
- [Sapling onward] there is a revealed value commitment to the same value as the input note;i
- if the value is nonzero, some revealed note commitment exists for this note;
- the prover knew the proof authorizing key of the note;

- the nullifier and note commitment are computed correctly.
and for each shielded output,

. [Sapling onward] there is a revealed value commitment to the same value as the output note;”
- the note commitment is computed correctly;

- itis infeasible to cause the nullifier of the output note to collide with the nullifier of any other note.

For Sprout, the JoinSplit statement also includes an explicit balance check. For Sapling and Orchard, the value
commitments corresponding to the inputs and outputs are checked to balance (together with any net transparent
input or output) outside the zk-SNARK.

2 In Zerocash [BCGGMTV2014], notes were called “coins”, and nullifiers were called “serial numbers".

® For Orchard, each Action reveals a single value commitment to the net value spent by the Action, rather than one value commitment for
the input note and one for the output note.
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In addition, various measures (differing between Sprout and Sapling or Orchard) are used to ensure that the
transaction cannot be modified by a party not authorized to do so.

Outside the zk-SNARK, it is checked that the nullifiers for the input notes had not already been revealed (i.e. they
had not already been spent).

A shielded payment address includes a transmission key for a “key-private” asymmetric encryption scheme.
Key-private means that ciphertexts do not reveal information about which key they were encrypted to, except to a
holder of the corresponding private key, which in this context is called the receiving key. This facility is used to
communicate encrypted output notes on the block chain to their intended recipient, who can use the receiving
key to scan the block chain for notes addressed to them and then decrypt those notes.

In Sapling and Orchard, for each spending key there is a full viewing key that allows recognizing both incoming
and outgoing notes without having spending authority. This is implemented by an additional ciphertext in each
Output description or Action description.

The basis of the privacy properties of Zcash is that when a note is spent, the spender only proves that some
commitment for it had been revealed, without revealing which one. This implies that a spent note cannot be linked
to the transaction in which it was created. That is, from an adversary’s point of view the set of possibilities for a
given note input to a transaction —its note traceability set— includes all previous notes that the adversary does
not control or know to have been spent.i This contrasts with other proposals for private payment systems, such
as CoinJoin [Bitcoin-CoinJoin] or CryptoNote [vanSaberh2014], that are based on mixing of a limited number of
transactions and that therefore have smaller note traceability sets.

The nullifiers are necessary to prevent double-spending: each note on the block chain only has one valid nullifier,
and so attempting to spend a note twice would reveal the nullifier twice, which would cause the second transaction
to be rejected.

2 Notation

B means the type of bit values, i.e. {0,1}. BY means the type of byte values, i.e. {0..255}.

N means the type of nonnegative integers. N* means the type of positive integers. Z means the type of integers.
Q means the type of rationals.

x : T is used to specify that  has type T'. A cartesian product type is denoted by S x T', and a function type by
S — T'. An argument to a function can determine other argument or result types.

The type of a randomized algorithm is denoted by S & T. The domain of a randomized algorithm may be (),
indicating that it requires no arguments. Given f : S & T and s : S, sampling a variable z : T from the output of f
applied to s is denoted by & f(s).

Initial arguments to a function or randomized algorithm may be written as subscripts, e.g. if z ¢ X,y : Y, and
f:X xY — Z, then an invocation of f(z,y) can also be written f,(y).

{z : T| p,} means the subset of  from T for which p,, (a boolean expression depending on z) holds.
T C U indicates that T is an inclusive subset or subtype of U.

S UT means the set union of S and 7.

S NT means the set intersection of Sand T, i.e. {x : S|z € T}.

S\ T means the set difference obtained by removing elements in T from S, i.e. {z : S|z ¢ T}.

x: T e, : U means the function of type ' — U mapping formal parameter z to e, (an expression depending
on z). The types T'and U are always explicit.

* We make this claim only for fully shielded transactions. It does not exclude the possibility that an adversary may use data present in
the cleartext of a transaction such as the number of inputs and outputs, or metadata-based heuristics such as timing, to make proba-
bilistic inferences about transaction linkage. For consequences of this in the case of partially shielded transactions, see [Peterson2017],
[Quesnelle2017], and [KYMM2018].
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r:Tgye, :Umeansz : T e, : UUV restricted to the domain {z : T'| e, ¢ V' } and range U.
9(T) means the powerset of T.

L is a distinguished value used to indicate unavailable information, a failed decryption or validity check, or an
exceptional case.

T, where T is a type and / is an integer, means the type of sequences of length ¢ with elements in T'. For example,
Bl means the set of sequences of ¢ bits, and BY" means the set of sequences of k bytes.

BY'™ means the type of byte sequences of arbitrary length.
length(S) means the length of (number of elements in) S.
truncate, (S) means the sequence formed from the first k¥ elements of S.

0x followed by a string of monospace hexadecimal digits means the corresponding integer converted from hexadec-
imal. [0x00]° means the sequence of ¢ zero bytes.

“

.." means the given string represented as a sequence of bytes in US-ASCII. For example, “abc” represents the
byte sequence [0x61, 0x62, 0x63].

[0]° means the sequence of ¢ zero bits. [1]° means the sequence of £ one bits.

a..b, used as a subscript, means the sequence of values with indices a through b inclusive. For example, ajy" yrev

means the sequence [ag"t, agi2, - apy . (For consistency with the notation in [BCGGMTV2014] and in [BK2016],
this specification uses 1-based indexing and inclusive ranges, notwithstanding the compelling arguments to the
contrary made in [EWD-831].)

{a..b} means the set or type of integers from a through b inclusive.

[ f(z) for x from a up to b | means the sequence formed by evaluating f on each integer from a to b inclusive, in
ascending order. Similarly, [ f(z) for « from a down to b ] means the sequence formed by evaluating f on each
integer from a to b inclusive, in descending order.

a || b means the concatenation of sequences a then b.

concatg(S) means the sequence of bits obtained by concatenating the elements of S as bit sequences.
sorted(S) means the sequence formed by sorting the elements of S.

F,, means the finite field with n elements, and F;, means its group under multiplication (which excludes 0).

Where there is a need to make the distinction, we denote the unique representative of a : F, in the range {0..n — 1}
(or the unique representative of a : I}, in the range {1..n — 1}) as a mod n. Conversely, we denote the element of I,
corresponding to an integer k : Z as k (mod n). We also use the latter notation in the context of an equality k& = &’
(mod n) as shorthand for k mod n = k" mod n, and similarly k # &’ (mod n) as shorthand for & mod n # &’ mod n.
(When referring to constants such as 0 and 1 it is usually not necessary to make the distinction between field
elements and their representatives, since the meaning is normally clear from context.)

[, [2] means the ring of polynomials over z with coefficients in F,.

a + b means the sum of a and b. This may refer to addition of integers, rationals, finite field elements, or group
elements (see §4.1.9 ‘Represented Group’ on p.31) according to context.

—a means the value of the appropriate integer, rational, finite field, or group type such that (—a) + a = 0 (or when a
is an element of a group G, (—a) + a = Og), and @ — b means a + (—b).

a - b means the product of multiplying a and b. This may refer to multiplication of integers, rationals, or finite field
elements according to context (this notation is not used for group elements).
a

5, means the value of the appropriate integer, rational, or finite field type such that (a/b) - b = a.

a/b, also written

amod ¢, fora : Nand ¢ : N*, means the remainder on dividing a by ¢. (This usage does not conflict with the notation
above for the unique representative of a field element.)
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a @ b means the bitwise-exclusive-or of ¢ and b, and a & b means the bitwise-and of a and b. These are defined
on integers (which include bits and bytes), or elementwise on equal-length sequences of integers, according to
context.

N N N

Z a; means the sum of a; . H a; means the product of a;_ . @ a; means the bitwise-exclusive-or of a; .
i=1 =1 i=1

0 0 0
When N = 0 these yield the appropriate neutral element, i.e. Zi:lai =0, Hizlai =1, and @izlai = 0 or the
all-zero bit sequence of length given by the type of a.

Va', where a : F,, means the positive square root of a in F,,, i.e. in the range {0.. %51 }. It is only used in cases where
the square root must exist.

Va, where a : [F,, means an arbitrary square root of a in If, or L if no such square root exists.
b?x:ymeansxz whenb=1,orywhenb=0.

a’, for a an integer or finite field element and b : Z, means the result of raising a to the exponent b, i.e.

b
I] a ifb>0
b, i=1

b .
H, -, otherwise.
la

i=

The [k] P notation for scalar multiplication in a group is defined in §4.1.9 ‘Represented Group’ on p. 31.

The convention of affixing * to a variable name is used for variables that denote bit sequence representations of
group elements.

The binary relations <, <, =, >, and > have their conventional meanings on integers and rationals, and are defined
lexicographically on sequences of integers.

floor(z) means the largest integer < x. ceiling () means the smallest integer > .
bitlength(z), for z ¢ N, means the smallest integer ¢ such that 2 > z.
The following integer constants will be instantiated in § 5.3 ‘Constants’ on p.72:

Sprout Sapling Orchard ,Sprout ,Sapling ,Orchard old new Sprout
MerkleDepth , MerkleDepth , MerkleDepth Aterkter Daerkie s Dierie - NOO NTY e Chsigr CpRE

s S Sapli Sapling ,Orchard ,Orchard
CpRFexpand: (PREniSapling: Lrem + Lseeds Lag Lo s st L Laer Cig ™ Lovier Lo+ Lovaion+ Lnee - MAX_MONEY,
BlossomActivationHeight, CanopyActivationHeight, ZIP212GracePeriod, NUFiveActivationHeight, SlowStartinterval,
PreBlossomHalvinglInterval, MaxBlockSubsidy, NumFounderAddresses, PoWLimit, PoWAveragingWindow,

PoWMedianBlockSpan, PoWDampingFactor, PreBlossomPoW TargetSpacing, and PostBlossomPoW TargetSpacing.

The rational constants FoundersFraction, PoWMaxAdjugtPown, and PoWMaxAdjustUp; the bit-sequence constants
prout . apling
Uncommitted>™" : Blmerniel and Uncommitted>® ™™ : Blwene): and the constant Uncommitted® ™™ < {0 .. gp — 1} will

also be defined in that section.

We use the abbreviation “ctEdwards” to refer to complete twisted Edwards elliptic curves and coordinates (see
§5.4.9.3 Jubjub’ on p.100).
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3 Concepts

3.1 Payment Addresses and Keys

Users who wish to receive shielded payments in the Zcash protocol must have a shielded payment address, which
is generated from a spending key.

The following diagrams depict the relations between key components in Sprout and Sapling and Orchard. Arrows
point from a component to any other component(s) that can be derived from it. Double lines indicate that the same
component is used in multiple abstractions.

Sprout Sapling Orchard

Shielded payment address Shielded payment address Shielded payment address
— — —

Transmission

Transmission

Transmission

Paying key ( apk PKenc key Diversifier d — pkqy key Diversifier ( d ——— pkqy key
index
Incoming Receiving Incoming ; Incoming Outgoing
viewing key { (apk Ske"‘> key viewing key s viewing key viewing key
Full Outgoing
viewing key { ak nk ovk viewing key
Full
viewing key
Proof author- K nsk
izing key
Expanded
a spending key { ask nsk ovk

Spending key

Spending key

Spending key

[Sprout] The receiving key ske,., incoming viewing key ivk = (ap, Skenc), and shielded payment address addr,, =
ay, Pkenc) are derived from the spending key aq,, as described in §4.2.1 ‘Sprout Key Components’ on p. 35.
pk> PKenc P g KeY ag 3d.2.1 p

[Sapling onward] An expanded spending key is composed of a Spend authorizing key ask, a nullifier private key
nsk, and an outgoing viewing key ovk. From these components we can derive a proof authorizing key (ak, nsk), a full
viewing key (ak, nk, ovk), an incoming viewing key ivk, and a set of diversified payment addresses addrq = (d, pky),
as described in §4.2.2 ‘Sapling Key Components’ on p. 35.

The consensus protocol does not depend on how an expanded spending key is constructed. Two methods of doing
so are defined:

1. Generate a spending key sk at random and derive the expanded spending key (ask, nsk, ovk) from it, as shown
in the diagram above and described in §4.2.2 ‘Sapling Key Components’ on p. 35.

2. Obtain an extended spending key as specified in [ZIP-32]; this includes a superset of the components of an
expanded spending key. This method is used in the context of a Hierarchical Deterministic Wallet.

[NUS5 onward] An Orchard spending key sk is used to derive a Spend authorizing key ask, and a full viewing key
(ak, nk, rivk). From the full viewing key we can also derive an incoming viewing key (composed of a diversifier
key dk and a KAOrehard private key ivk), an outgoing viewing key ovk, and a set of diversified payment addresses
addry = (d, pky), as described in §4.2.3 ‘Orchard Key Components’ on p.37.

Non-normative note: In zcashd, all Sapling and Orchard keys and addresses are derived according to [ZIP-32].

The composition of shielded payment addresses, incoming viewing keys, full viewing keys, and spending keys is
a cryptographic protocol detail that should not normally be exposed to users. However, user-visible operations
should be provided to obtain a shielded payment address, incoming viewing key, or full viewing key from a spending
key or extended spending key.
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Users can accept payment from multiple parties with a single shielded payment address and the fact that these
payments are destined to the same payee is not revealed on the block chain, even to the paying parties. However if
two parties collude to compare a shielded payment address they can trivially determine they are the same. In the
case that a payee wishes to prevent this they should create a distinct shielded payment address for each payer.

[Sapling onward] Sapling and Orchard provide a mechanism to allow the efficient creation of diversified payment
addresses with the same spending authority. A group of such addresses shares the same full viewing key and
incoming viewing key, and so creating as many unlinkable addresses as needed does not increase the cost of
scanning the block chain for relevant transactions.

Note: It is conventional in cryptography to call the key used to encrypt a message in an asymmetric encryption
scheme a “public key”. However, the public key used as the transmission key component of an address (pke,. or pky)
need not be publically distributed; it has the same distribution as the shielded payment address itself. As mentioned
above, limiting the distribution of the shielded payment address is important for some use cases. This also helps
to reduce reliance of the overall protocol on the security of the cryptosystem used for note encryption (see §4.19
‘In-band secret distribution (Sprout)’ on p.63 and §4.20 Tn-band secret distribution (Sapling and Orchard)’
on p. 65), since an adversary would have to know pk,,. or some pky in order to exploit a hypothetical weakness in
that cryptosystem.

3.2 Notes

A note (denoted n) can be a Sprout note or a Sapling note or an Orchard note. In each case it represents that
a value v is spendable by the recipient who holds the spending key corresponding to a given shielded payment
address.

Let MAX_MONEY, Eﬁ’;{;’“t, CpREntsapling: La- and £, be as defined in § 5.3 ‘Constants’ on p.72.

Let NoteCommit>™"* be as defined in §5.4.8.1 ‘Sprout Note Commitments’ on p.93.

Let NoteCommit>*"""€ be as defined in §5.4.8.2 ‘Windowed Pedersen commitments’ on p. 94.

Let KAS?P" be as defined in §5.4.5.3 ‘Sapling Key Agreement’ on p.87.

Let DiversifyHash>**""¢be as defined in §5.4.1.6 ‘DiversifyHash>*"""€ and DiversifyHash® " Hash Functions’ onp.76.
Let NoteCommit®" " be as defined in §5.4.8.4 ‘Sinsemilla commitments’ on p.96.

Let KA?“" ™ be as defined in §5.4.5.5 ‘Orchard Key Agreement’ on p. 88.

Let DiversifyHash®™"be as defined in §54.1.6 ‘DiversifyHash>*™" and DiversifyHash®" " Hash Functions’ onp.76.
Let PRF"O"M™ he as defined in § 5.4.2 ‘Pseudo Random Functions’ on p. 84.

Let gp be as defined in §5.4.9.6 ‘Pallas and Vesta’ on p.103.

A Sprout note is a tuple (ay, v, p, rcm), where:

Sprout.
© Apk ¢ B ] is the paying key of the recipient’s shielded payment address;
- v:{0..MAX_MONEY} is an integer representing the value of the note in zatoshi (1 ZEC = 10° zatoshi);

Sprout]

. p: B lisused as input to PRF;‘;SF““t to derive the nullifier of the note;

- rem : NoteCommit®™°"" Trapdoor is a random commitment trapdoor as defined in §4.1.8 ‘Commitment’ on
p- 29.

Let Note®™°"* be the type of a Sprout note, i.e.

Sprout

Sprout
Note®™®“* .= Bl%% | » {0.. MAX_MONEY} x Bl | x NoteCommit>""* Trapdoor.
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A Sapling note is a tuple (d, pkq, v, rcm), where:
- d : B is the diversifier of the recipient’s shielded payment address;

- pky ¢ KASP'"8 PyplicPrimeSubgroup is the diversified transmission key of the recipient’s shielded payment
address;

- v:{0..MAX_MONEY} is an integer representing the value of the note in zatoshi;

- rem 2 NoteCommit>*P"™& Trapdoor is a random commitment trapdoor as defined in §4.1.8 ‘Commitment’ on
p- 29.

Let Note®>*"8 be the type of a Sapling note, i.e.

Note>P"e .— Blfa) 5 KASP'Me pyplicPrimeSubgroup x {0.. MAX_MONEY} x NoteCommit>*"™"¢ Trapdoor.

An Orchard note is a tuple (d, pky, v, p, b, rcm), where:
. d: B! is the diversifier of the recipient’s shielded payment address;

- pky : KA9™ pyblic is the diversified transmission key of the recipient’s shielded payment address;

- v: {0..2%w_1} is an integer representing the value of the note in zatoshi;

- p:F,_isused as input to PRFIO"™ 45 part of deriving the nullifier of the note;

qp
- ¢ : F, is additional randomness used in deriving the nullifier;

- rem 2 NoteCommit®™™™ Trapdoor is a random commitment trapdoor as defined in §4.1.8 ‘Commitment’ on
p. 29.

Let Note®"™ be the type of an Orchard note, i.e.

Note®rehard .— Blfal 5 KAC™2rd pyplic x {0..2%m—1} x F,, x F, x NoteCommit°™"*™ Trapdoor.

Creation of new notes is described in §4.7 ‘Sending Notes’ on p.42.

3.2.1 Note Plaintexts and Memo Fields

Transmitted notes are stored on the block chain in encrypted form, together with a representation of the note
commitment cm described in §3.2.2 ‘Note Commitments’ on p.15.

A note plaintext also includes a 512-byte memo field associated with this note. The usage of the memo field is by
agreement between the sender and recipient of the note. RECOMMENDED non-consensus constraints on the
memo field contents are specified in [ZIP-302].

For Sprout, the note plaintexts in each JoinSplit description are encrypted to the respective transmission keys
new

PKenc.1. nmev as specified in §4.7.1 ‘Sending Notes (Sprout)’ on p.42.

Each Sprout note plaintext (denoted np) consists of

Sprout

(leadByte : BY, v : {0..2%—1} p: Bl= | rem : NoteCommit>P®“. Trapdoor, memo : ]BY[512]).

The field leadByte is always 0x00 for Sprout. The fields v, p, and rcm are as defined in § 3.2 ‘Notes’ on p.13.

[Sapling onward] For Sapling and Orchard, the note plaintext in each Output description or Action description is
encrypted to the diversified payment address (d, pky), as specified in §4.7.2 ‘Sending Notes (Sapling)’ on p.43 or
§4.7.3 ‘Sending Notes (Orchard)’ on p.44.
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Each Sapling or Orchard note plaintext (denoted np) consists of
(leadByte : BY, d : B[Zd],v :{0.. 2/5“'“6—1}, rseed ¢ IB%Y[32], memo : BY[512])

The field leadByte indicates the version of the encoding of a Sapling or Orchard note plaintext. For Sapling it is
0x01 before activation of the Canopy network upgrade and 0x02 afterward, as specified in [ZIP-212]. For Orchard
note plaintexts it is always 0x02.

The fields d and v are as defined in § 3.2 ‘Notes’ on p.13.
The use of the field rseed is described in [ZIP-212].
Encodings are given in § 5.5 ‘Encodings of Note Plaintexts and Memo Fields’ on p.110. The result of encryption

forms part of a transmitted note(s) ciphertext. For further details, see §4.19 In-band secret distribution (Sprout)
on p. 63 and §4.20 In-band secret distribution (Sapling and Orchard)’ on p. 65.

3.2.2 Note Commitments

When a note is created as an output of a transaction, only a commitment (see §4.1.8 ‘Commitment’ on p.29) to
the note contents is disclosed publically in the associated JoinSplit description or Output description or Action
description. If the transaction is entered into the block chain, each such note commitment is appended to the
note commitment tree of the associated treestate. This allows the value and recipient to be kept private, while the
commitment is used by the zk-SNARK proof when the note is spent, to check that it exists on the block chain.

Treestates are described in § 3.4 “Transactions and Treestates’ on p.17, and note commitment trees are described
in § 3.8 ‘Note Commitment Trees’ on p.20.

A Sprout note commitment on a note n = (ap, v, p, rcm) is computed as

NoteCommitment>P"(n) = NoteCommitrSCpr:’“t(apk, v, p),

where NoteCommit>™" is instantiated in § 5.4.8.1 ‘Sprout Note Commitments’ on p.93.

A Sapling note commitment on a note n = (d, pky, v, rcm) is computed as

g4 := DiversifyHash>*"&(d)
J_, lf g4 — 1
NoteCommit>2""8(repr; (g4), repr;(pky),v), otherwise.

rcm

Sapling(

NoteCommitment n) =

where NoteCommit®*'"€ is instantiated in § 5.4.8.2 ‘Windowed Pedersen commitments’ on p.94.

Notice that the above definition of a Sapling note does not have a p component. There is in fact a p value associated
with each Sapling note, but this can only be computed once its position in the note commitment tree (see § 3.4
“Transactions and Treestates’ on p.17) is known. We refer to the combination of a note and its note position pos,
as a positioned note.

For a positioned note, we can compute the value p as described in §4.16 ‘Computing p values and Nullifiers’ on
p- 56.

A Sapling note commitment is represented in an Output description by the u-coordinate of a Jubjub curve point,

as specified in §4.5 ‘Output Descriptions’ on p.40.

An Orchard note commitment on a note n = (d, pkg, v, p,\, rcm) is computed as

g4 := DiversifyHash®™"(d)

NoteCommitment®™(n) := NoteCommitore"(reprs(g4), reprs(pkg), v, 0, )
where NoteCommit®™ " is instantiated in § 5.4.8.4 ‘Sinsemilla commitments’ on p.96.
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If NoteCommit®* "™ returns L (which happens with insignificant probability), the note is invalid and should be

recreated with a different rseed.

Unlike in Sapling, the definition of an Orchard note includes the p component; the note’s position in the note
commitment tree does not need to be known in order to compute this value.

An Orchard note commitment is represented in an Action description by the z-coordinate of a Pallas curve point,
as specified in §4.6 ‘Action Descriptions’ on p.41.

3.2.3 Nullifiers

The nullifier for a note, denoted nf, is a value unique to the note that is used to prevent double-spends. When
a transaction that contains one or more JoinSplit descriptions or Spend descriptions or Action descriptions is
entered into the block chain, all of the nullifiers for notes spent by that transaction are added to the nullifier set of
the associated treestate. A transaction is not valid if it would have added a nullifier to the nullifier set that already
exists in the set.

Treestates are described in § 3.4 Transactions and Treestates’ on p.17, and nullifier sets are described in §3.9
‘Nullifier Sets’ on p.21.

In more detail, when a note is spent, the spender creates a zero-knowledge proof that it knows (p, ag) or (p, ak, nsk)
or (p, ak, nk), consistent with the publically disclosed nullifier and some previously committed note commitment.

Because each note can have only a single nullifier, and the same nullifier value cannot appear more than once in a
valid block chain, double-spending is prevented.

The nullifier for a Sprout note is derived from the p value and the recipient’s spending key a.
The nullifier for a Sapling note is derived from the p value and the recipient’s nullifier deriving key nk.

The nullifier for an Orchard note is derived from the p and 1 values, the recipient’s nullifier deriving key nk, and
the note commitment.

The nullifier computation uses a Pseudo Random Function (see §4.1.2 ‘Pseudo Random Functions’ on p. 24), as
described in §4.16 ‘Computing p values and Nullifiers’ on p.56.

3.3 The Block Chain

At a given point in time, each full validator is aware of a set of candidate blocks. These form a tree rooted at the
genesis block, where each node in the tree refers to its parent via the hashPrevBlock block header field (see §7.6
‘Block Header Encoding and Consensus’ on p.128).

A path from the root toward the leaves of the tree consisting of a sequence of one or more valid blocks consistent
with consensus rules, is called a valid block chain.

Each block in a block chain has a block height. The block height of the genesis block is 0, and the block height of each
subsequent block in the block chain increments by 1. Implementations MUST support block heights up to and in-
cluding 2*' —1. As of NUS5, there is a consensus rule that all coinbase transactions (see § 3.11 ‘Coinbase Transactions’
on p. 21) MUST have the nExpiryHeight field set to the block height, and this limits the maximum block height to
232 _ 1, absent future consensus changes.

In order to choose the best valid block chain in its view of the overall block tree, a node sums the work, as defined
in §7.7.5 ‘Definition of Work’ on p.133, of all blocks in each valid block chain, and considers the valid block chain
with greatest total work to be best. To break ties between leaf blocks, a node will prefer the block that it received
first.
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The consensus protocol is designed to ensure that for any given block height, the vast majority of well-connected
nodes should eventually agree on their best valid block chain up to that height. A full Valjdatori SHOULD attempt
to obtain candidate blocks from multiple sources in order to increase the likelihood that it will find a valid block
chain that reflects a recent consensus state.

A network upgrade is settled on a given network when there is a social consensus that it has activated with a
given activation block hash. A full validator that potentially risks Mainnet funds or displays Mainnet transaction
information to a user MUST do so only for a block chain that includes the activation block of the most recent settled
network upgrade, with the corresponding activation block hash. Currently, there is social consensus that NU5 has
activated on the Zcash Mainnet and Testnet with the activation block hashes given in § 3.12 ‘Mainnet and Testnet’
onp.21.

A full validator MAY impose a limit on the number of blocks it will “roll back” when switching from one best valid
block chain to another that is not a descendent. For zcashd and zebra this limit is 100 blocks.

3.4 Transactions and Treestates

Each block contains one or more transactions.

Each transaction has a transaction ID. Transaction IDs are used to refer to transactions in tx_out fields, in leaf
nodes of a block’s transaction tree rooted at hashMerkleRoot, and in other parts of the ecosystem; for example they
are shown in block chain explorers and can be used in higher-level protocols. Version 5 transactions also have
a wtxid, which is used instead of the transaction ID when gossiping transactions in the peer-to-peer protocol
[ZIP-239]. The computation of transaction IDs and wtxids is described in §7.1.1 Transaction Identifiers’ on p.121.
For more detail on the distinction between these two identifiers and when to use each of them, see [ZIP-239] and
[Z1P-244].

Transparent inputs to a transaction insert value into a transparent transaction value pool associated with the
transaction, and transparent outputs remove value from this pool. The effect of Sprout JoinSplit transfers, Sapling
Spend transfers and Output transfers, and Orchard Action transfers on the transparent transaction value pool are
specified in §4.18.1 ‘JoinSplit Statement (Sprout)’ on p.58,§4.13 ‘Balance and Binding Signature (Sapling)’ on
p.51, and §4.14 ‘Balance and Binding Signature (Orchard)’ on p.53 respectively.

As in Bitcoin, the remaining value in the transparent transaction value pool of a non-coinbase transaction is
available to miners as a fee. That is, the sum of those values for non-coinbase transactions in each block is treated as
an implicit input to the transparent transaction value pool balance of the block’s coinbase transaction (in addition
to the implicit input created by issuance).

The remaining value in the transparent transaction value pool of coinbase transactions is destroyed.
Consensus rule: The remaining value in the transparent transaction value pool MUST be nonnegative.

To each transaction there are associated initial treestates for Sprout and for Sapling and for Orchard. Each treestate
consists of:

- a note commitment tree (§ 3.8 ‘Note Commitment Trees’ on p.20);

- a nullifier set (§ 3.9 ‘Nullifier Sets’ on p.21).

Validation state associated with transparent inputs and outputs, such as the UTXO (unspent transaction output) set,
is not described in this document; it is used in essentially the same way as in Bitcoin.

An anchoris a Merkle tree root of a note commitment tree (either the Sprout tree or the Sapling tree or the Orchard
tree). It uniquely identifies a note commitment tree state given the assumed security properties of the Merkle tree’s
hash function. Since the nullifier set is always updated together with the note commitment tree, this also identifies
a particular state of the associated nullifier set.

® There is reason to follow the requirements in this section also for non-full validators, but those are outside the scope of this protocol
specification.
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In a given block chain, for each of Sprout and Sapling and Orchard, treestates are chained as follows:
- The input treestate of the first block is the empty treestate.
- The input treestate of the first transaction of a block is the final treestate of the immediately preceding block.

- The input treestate of each subsequent transaction in a block is the output treestate of the immediately
preceding transaction.

- The final treestate of a block is the output treestate of its last transaction.

JoinSplit descriptions also have interstitial input and output treestates for Sprout, explained in the following section.
There is no equivalent of interstitial treestates for Sapling or for Orchard.

3.5 JoinSplit Transfers and Descriptions

A JoinSplit description is data included in a transaction that describes a JoinSplit transfer, i.e. a shielded value
transfer. In Sprout, this kind of value transfer was the primary Zcash-specific operation performed by transactions.

old new

e Id : Id
A JoinSplit transfer spends N°“ notes n{ s and transparent input vg;,, and creates N"®" notes nj*{re and
ne

transparent output vy . It is associated with a JoinSplit statement instance (§4.18.1 ‘JoinSplit Statement (Sprout)’
on p.58), for which it provides a zk-SNARK proof .

Each transaction has a sequence of JoinSplit descriptions.

The total vy value adds to, and the total vglfb value subtracts from the transparent transaction value pool of the
containing transaction.

The anchor of each JoinSplit description in a transaction refers to a Sprout treestate.

For each of the N° shielded inputs, a nullifier is revealed. This allows detection of double-spends as described in
§3.9 ‘Nullifier Sets’ on p.21.

For each JoinSplit description in a transaction, an interstitial output treestate is constructed which adds the note
commitments and nullifiers specified in that JoinSplit description to the input treestate referred to by its anchor.
This interstitial output treestate is available for use as the anchor of subsequent JoinSplit descriptions in the same
transaction. In general, therefore, the set of interstitial treestates associated with a transaction forms a tree in which
the parent of each node is determined by its anchor.

Interstitial treestates are necessary because when a transaction is constructed, it is not known where it will
eventually appear in a mined block. Therefore the anchors that it uses must be independent of its eventual position.

The input and output values of each JoinSplit transfer MUST balance exactly. This is not a consensus rule since it
cannot be checked directly; it is enforced by the Balance rule of the JoinSplit statement.

Consensus rules:

- For the first JoinSplit description of a transaction, the anchor MUST be the output Sprout treestate of a
previous block.

- The anchor of each JoinSplit description in a transaction MUST refer to either some earlier block’s final Sprout
treestate, or to the interstitial output treestate of any prior JoinSplit description in the same transaction.

3.6 Spend Transfers, Output Transfers, and their Descriptions

JoinSplit transfers are not used for Sapling notes. Instead, there is a separate Spend transfer for each shielded
input, and a separate Output transfer for each shielded output.

Spend descriptions and Output descriptions are data included in a transaction that describe Spend transfers and
Output transfers, respectively.
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A Spend transfer spends a note n°. Its Spend description includes a Pedersen value commitment to the value of

the note. It is associated with an instance of a Spend statement (§4.18.2 ‘Spend Statement (Sapling)’ on p.59) for
which it provides a zk-SNARK proof.

An Output transfer creates a note n"®". Similarly, its Output description includes a Pedersen value commitment to

the note value. It is associated with an instance of an Output statement (§4.18.3 ‘Output Statement (Sapling)’ on
p. 60) for which it provides a zk-SNARK proof.

Each transaction has a sequence of Spend descriptions and a sequence of Output descriptions.

To ensure balance, we use a homomorphic property of Pedersen commitments that allows them to be added and
subtracted, as elliptic curve points (§ 5.4.8.3 ‘Homomorphic Pedersen commitments (Sapling and Orchard)’ on
p.95). The result of adding two Pedersen value commitments, committing to values v, and v,, is a new Pedersen
value commitment that commits to v; + v,. Subtraction works similarly.

Therefore, balance can be enforced by adding all of the value commitments for shielded inputs, subtracting all of
the value commitments for shielded outputs, and proving by use of a Sapling binding signature (as described in
§4.13 ‘Balance and Binding Signature (Sapling)’ on p. 51) that the result commits to a value consistent with the
net transparent value change. This approach allows all of the zk-SNARK statements to be independent of each
other, potentially increasing opportunities for precomputation.

A Spend description specifies an anchor, which refers to the output Sapling treestate of a previous block. It also
reveals a nullifier, which allows detection of double-spends as described in § 3.2.3 ‘Nullifiers’ on p.16.

Non-normative note: Interstitial treestates are not necessary for Sapling, because a Spend transfer in a given
transaction cannot spend any of the shielded outputs of the same transaction. This is not an onerous restriction
because, unlike Sprout where each JoinSplit transfer must balance individually, in Sapling it is only necessary for
the whole transaction to balance.

Consensus rules:

balanceSapling

- The Spend transfers and Action transfers of a transaction MUST be consistent with its v value as

specified in §4.13 ‘Balance and Binding Signature (Sapling)’ on p.51.

- The anchor of each Spend description MUST refer to some earlier block’s final Sapling treestate. The anchor
is encoded separately in each Spend description for v4 transactions, or encoded once and shared between all
Spend descriptions in a v5 transaction.

3.7 Action Transfers and their Descriptions

Orchard introduces Action transfers, each of which can optionally perform a spend, and optionally perform an
output.

Action descriptions are data included in a transaction that describe Action transfers.

; Id , o
An Action transfer spends a note n°°, and creates a note n"". Its Action description includes a Pedersen value

commitment to the net value, i.e. the value of the spent note minus the value of the created note. It is associated
with an instance of an Action statement (§4.18.4 ‘Action Statement (Orchard)’ on p. 61) for which it provides a
zk-SNARK proof.

Each version 5 transaction has a sequence of Action descriptions. Version 4 transactions cannot contain Action
descriptions.

As in Sapling, we use the homomorphic property of Pedersen commitments to enforce balance: we add all of the
value commitments and prove by use of an Orchard binding signature that the result commits to a value consistent
with the net transparent value change (as described in §4.14 ‘Balance and Binding Signature (Orchard)’ on
p.53). This approach allows all of the zk-SNARK statements to be independent of each other, potentially increasing
opportunities for precomputation.

The fields of an Action description are essentially a merger of the fields of a Spend description and an Output
description, but with only a single value commitment. Also, the zk-SNARK proof is encoded outside the Action
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description, in order to more easily take advantage of space and performance optimizations in the Halo 2 proof
system (§5.4.10.3 ‘Halo 2’ on p.110) that apply when multiple proofs are aggregated. Each Action description does
not encode a separate anchor field, because that is encoded once in the anchorQOrchard field of the transaction.

Non-normative note: As with Sapling, interstitial treestates are not necessary for Orchard, because an Action
transfer in a given transaction cannot spend any of the shielded outputs of the same transaction.

Consensus rules:

. The Action transfers of a transaction MUST be consistent with its y?22nceOrchard

‘Balance and Binding Signature (Orchard)’ on p.53.

value as specified in §4.14

- The anchorOrchard field of the transaction, whenever it exists (i.e. when there are any Action descriptions),
MUST refer to some earlier block’s final Orchard treestate.

3.8 Note Commitment Trees

Let /3P4t MerkleDepth>®" (32PI"E MerkleDepth®*"8 /07" and MerkleDepth® " “be as defined in §5.3 ‘Constants’
onp.72.

rt
/\
?
cmy cmy cm, cmy cmy ?

A note commitment tree is an incremental Merkle tree of fixed depth used to store note commitments that JoinSplit
transfers or Spend transfers or Action transfers produce. Just as the UTXO (unspent transaction output) set used in
Bitcoin, it is used to express the existence of value and the capability to spend it. However, unlike the UTXO set, it is
not the job of this tree to protect against double-spending, as it is append-only.

A root of a note commitment tree is associated with each treestate (§ 3.4 “Transactions and Treestates’ on p.17).

Each node in the incremental Merkle tree is associated with a hash value of size fyot or (721" or (517 bits. The
layer numbered h, counting from layer 0 at the root, has 2" nodes with indices 0 to 2" — 1 inclusive. The hash value
associated with the node at index i in layer h is denoted M.

The index of a note’s commitment at the leafmost layer (MerkIeDepthSPrOUt or MerkIeDepthsa‘pling or MerkIeDepthorChard)
is called its note position.

Consensus rules:

- A block MUST NOT add Sprout note commitments that would result in the Sprout note commitment tree

MerkIeDepthSprOUt

exceeding its capacity of 2 leaf nodes.

- [Sapling onward] A block MUST NOT add Sapling note commitments that would result in the Sapling note

MerkIeDepthSapling

commitment tree exceeding its capacity of 2 leaf nodes.

- [NU5 onward] A block MUST NOT add Orchard note commitments that would result in the Orchard note

l\/lerkleDepthorChard

commitment tree exceeding its capacity of 2 leaf nodes.
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3.9 Nullifier Sets

Each full validator maintains a nullifier set logically associated with each treestate. As valid transactions contain-
ing JoinSplit transfers or Spend transfers or Action transfers are processed, the nullifiers revealed in JoinSplit
descriptions and Spend descriptions and Action descriptions are inserted into the nullifier set associated with the
new treestate. Nullifiers are enforced to be unique within a valid block chain, in order to prevent double-spends.

Consensus rule: A nullifier MUST NOT repeat either within a transaction, or across transactions in a valid block
chain. Sprout and Sapling and Orchard nullifiers are considered disjoint, even if they have the same bit pattern.

3.10 Block Subsidy, Funding Streams, and Founders’ Reward

Like Bitcoin, Zcash creates currency when blocks are mined. The value created on mining a block is called the
block subsidy.

[Pre-Canopy] The block subsidy is composed of a miner subsidy and a Founders’ Reward.

[Canopy onward] The block subsidy is composed of a miner subsidy and a series of funding streams.

As in Bitcoin, the miner of a block also receives transaction fees.

The calculations of the block subsidy, miner subsidy, Founders’Reward, and funding streams depend on the block
height, as defined in § 3.3 The Block Chain’ on p.16.

The calculations are described in § 7.8 ‘Calculation of Block Subsidy, Funding Streams, and Founders’ Reward’
on p.133.

3.11 Coinbase Transactions

A transaction that has a single transparent input with a null prevout field, is called a coinbase transaction. Every
block has a single coinbase transaction as the first transaction in the block. The purpose of this coinbase transaction
is to collect and spend any miner subsidy, and transaction fees paid by other transactions included in the block.

[Pre-Canopy] As described in §7.9 ‘Payment of Founders’ Reward’ on p.134, the coinbase transaction MUST also
pay the Founders’Reward.

[Canopy onward] As described in § 710 ‘Payment of Funding Streams’ on p.136, the coinbase transaction MUST
also pay the funding streams.

3.12 Mainnet and Testnet

The production Zcash network, which supports the ZEC token, is called Mainnet. Governance of its protocol is
by agreement between the Electric Coin Company and the Zcash Foundation [ECCZF2019]. Subject to errors and
omissions, each version of this document intends to describe some version (or planned version) of that agreed
protocol.

All block hashes given in this section are in RPC byte order (that is, byte-reversed relative to the normal order for a
SHA-256 hash).

Mainnet genesis block: 00040fe8ec8471911baaldb1266eal15dd06b4a8a5c453883c000b031973dce08
Mainnet NUS5 activation block: 0000000000d723156d9b65ffcf4984da7a19675ed7e2£06d9e¢5d5188af087bf8
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There is also a public test network called Testnet. It supports a TAZ token which is intended to have no monetary
value. By convention, Testnet activates network upgrades (as described in § 6 ‘Network Upgrades’ on p.118) before
Mainnet, in order to allow for errors or ambiguities in their specification and implementation to be discovered.
The Testnet block chain is subject to being rolled back to a prior block at any time.

Testnet genesis block: 05a60292d99d85997cce3b87616c089£6124d7342a£37106edc76126334a2¢38
Testnet NUS activation block: 0006d75c60b3093d1b671ff7dal1c99ea535df9927c02e6ed9eb898605eb7381
We call the smallest units of currency (on either network) zatoshi.

On Mainnet, 1 ZEC = 10° zatoshi. On Testnet, 1 TAZ = 10° zatoshi.

Other networks using variants of the Zcash protocol may exist, but are not described by this specification.

4 Abstract Protocol

‘We all know that the only mental tool by means of which a very finite piece of reasoning
can cover a myriad cases is called “abstraction”; as a result the effective exploitation of
[their] powers of abstraction must be regarded as one of the most vital activities of a
competent programmer. In this connection it might be worth-while to point out that the
purpose of abstracting is not to be vague, but to create a new semantic level in which
one can be absolutely precise.’

— Edsger Dijkstra, “The Humble Programmer” [EWD-340]

Abstraction is an incredibly important idea in the design of any complex system. Without abstraction, we would
not be able to design anything as ambitious as a computer, or a cryptographic protocol. Were we to attempt it, the
computer would be hopelessly unreliable or the protocol would be insecure, if they could be completed at all.

The aim of abstraction is primarily to limit how much a human working on a piece of a system has to keep in mind
at one time, in order to apprehend the connections of that piece to the remainder. The work could be to extend or
maintain the system, to understand its security or other properties, or to explain it to others.

In this specification, we make use wherever possible of abstractions that have been developed by the cryptography
community to model cryptographic primitives: Pseudo Random Functions, commitment schemes, signature
schemes, etc. Each abstract primitive has associated syntax (its interface as used by the rest of the system) and
security properties, as documented in this part. Their instantiations are documented in part § 5 ‘Concrete Protocol’
onp.71L

In some cases this syntax or these security requirements have been extended to meet the needs of the Zcash
protocol. For example, some of the PRFs used in Zcash need to be collision-resistant, which is not part of the usual
security requirement for a PRF; some signature schemes need to support additional functionality and security
properties; and so on. Also, security requirements are sometimes intentionally stronger than what is known to be
needed, because the stronger property is simpler or less error-prone to work with, and/or because it has been
studied in the cryptographic literature in more depth.

We explicitly do not claim, however, that all of these instantiations satisfying their documented syntax and security
requirements would be sufficient for security or correctness of the overall Zcash protocol, or that it is always
necessary. The claim is only that it helps to understand the protocol; that is, that analysis or extension is simplified by
making use of the abstraction. In other words, a good way to understand the use of that primitive in the protocol
is to model it as an instance of the given abstraction. And furthermore, if the instantiated primitive does not in fact
satisfy the requirements of the abstraction, then this is an error that should be corrected -whether or not it leads to
a vulnerability- since that would compromise the facility to understand its use in terms of the abstraction.

In this respect the abstractions play a similar role to that of a type system (which we also use): they add a form of
redundancy to the specification that helps to express the intent.

Each property is a claim that may be incorrect (or that may be insufficiently precisely stated to determine whether
it is correct). An example of an incorrect security claim occurs in the Zerocash protocol [BCGGMTV2014]: the
instantiation of the note commitment scheme used in Zerocash failed to be binding at the intended security level
(see §8.5 Internal hash collision attack and fix’ on p.141).
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Another hazard that we should be aware of is that abstractions can be “leaky”: an instantiation may impose conditions
on its correct or secure use that are not captured by the abstraction’s interface and semantics. Ideally, the abstraction
would be changed to explicitly document these conditions, or the protocol changed to rely only on the original
abstraction.

An abstraction can also be incomplete (not quite the same thing as being leaky): it intentionally -usually for
simplicity- does not model an aspect of behaviour that is important to security or correctness. An example would
be resistance to side-channel attacks; this specification says little about side-channel defence, among many other
implementation concerns.

4.1 Abstract Cryptographic Schemes

4.1.1 Hash Functions

Let MerkleDepth>™°, ("ot MerkleDepth>**"8, 7p2P"8, MerkleDepth®™ ", ¢0rlerd (o2Pn8 g pe o\, 0320 0y 6., and N
be as defined in §5.3 ‘Constants’ on p.72.

Let J, J®, 1% r;, and ¢; be as defined in §5.4.9.3 Jubjub’ on p.100.

Let P* be as defined in §5.4.9.6 ‘Pallas and Vesta’ on p.103.
The following hash functions are used in §4.9 ‘Merkle Path Validity’ on p.47:

Sprout Sprout Sprout
MerkleCRHSP™" : (0 MerkleDepth® "t — 1} x Bl pllieiel  _ gl
MerkleCRHS'™ : {0 .. MerkleDepth®™™ 1} x Blf%ewe] 5 Blfiewe)  _ plle]

MerkleCRHO™ = {0 .. MerkleDepth® ™™ — 1} x {0..qp — 1} x {0..qp — 1} — {0..qp — 1}.

MerkleCRH>"""is collision-resistant except on its first argument. MerkleCRH>*""8 and MerkleCRH" "™ are collision-
resistant on all their arguments.

These functions are instantiated in § 5.4.1.3 ‘Merkle Tree Hash Function’ on p.74.

Sprout: [N°|d]

hSigCRH : Blfs=dl x Blferr
‘JoinSplit Descriptions’ on p.38. It is instantiated in §5.4.1.4 ‘hg;, Hash Function’ on p.75.

x JoinSplitSig.Public — Bsel is a collision-resistant hash function used in §4.3

EquihashGen : (n : N*) x N* x BY™ x N* — BI" is another hash function, used in § 7.7.1 ‘Equihash’ on p-130 to
generate input to the Equihash solver. The first two arguments, representing the Equihash parameters n and k, are
written subscripted. It is instantiated in § 5.4.1.11 ‘Equihash Generator’ on p. 83.

Sapling

CRHY: BI%) Bl — {0..2% —1}isa collision-resistant hash function used in §4.2.2 ‘Sapling Key Components’
on p. 35 to derive an incoming viewing key for a Sapling shielded payment address. It is also used in the Spend
statement (§4.18.2 ‘Spend Statement (Sapling) on p.59) to confirm use of the correct keys for the note being
spent. It is instantiated in § 5.4.1.5 ‘CRH"* Hash Function’ on p.75.

MixingPedersenHash : J x {0..r; — 1} — Jis a hash function used in §4.16 ‘Computing p values and Nullifiers’ on
p. 56 to derive the unique p value for a Sapling note. It is also used in the Spend statement to confirm use of the
correct p value as an input to nullifier derivation. It is instantiated in §5.4.1.8 ‘Mixing Pedersen Hash Function’ on
p-79.

DiversifyHash>*"™™¢ : Bl _ 10)* {1} and DiversifyHash®""* : Bl%) _ P* are hash functions instantiated in § 5.4.1.6

‘DiversifyHash>*™" and DiversifyHash®" " Hash Functions’ on p.76, satisfying the Unlinkability security property
described in that section. They are used to derive a diversified base from a diversifier, which is specified in §4.2.2
‘Sapling Key Components’ on p.35 and in §4.2.3 ‘Orchard Key Components’ on p. 37.
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4.1.2 Pseudo Random Functions

PRF, denotes a Pseudo Random Function keyed by z.

Let £, . lnsig, éls,f{gu", éi,pm"t, Lo Louk: UpRFexpand: UPRFnfSapling: N° and N™" be as defined in § 5.3 ‘Constants’ on p.72.
Let Sym be as defined in §5.4.3 ‘Symmetric Encryption’ on p. 86.

Let ¢; and Jg) be as defined in §5.4.9.3 Jubjub’ on p.100.

Let /p and ¢p be as defined in §5.4.9.6 ‘Pallas and Vesta” on p.103.

For Sprout, four independent PRF, are needed:

PRE . gl gy = gl
PREP Bl x {1.N9} x Blfsel , Bl
PRF®  : B x {1.N""} x Blosel _, "
pRE"SProut . pll, ] R[Zf,"R';”‘ —>IB%M§E§M

These are used in §4.18.1 “JoinSplit Statement (Sprout)’ on p.58; PRF**"" is also used to derive a shielded payment
address from a spending key in §4.2.1 ‘Sprout Key Components’ on p. 35.

For Sapling, three additional PRF, are needed:
PRFeXpand ° ]B[Esk] X BY[N] — ]BY[EPRFexpand/S]
PRFockSapling . BYVovk/S] « By[ZI/S] ~ By[ex/g] % BY[ZI/S] — Sym.K

PRFNfSaP“ng . .,]L(:) « B[eﬂ] s EYVPRanSapHng/S]

For Orchard, we need PRF®P*" and also:

PREOSkOrchard . pvllon /8] o pylte/s) o pylte/s) o plle/S) _ 5ym K
pRf"fOrchard . x F,, —~F,

ap
PRF®®*" is used in the following places:
- §4.2.2 ‘Sapling Key Components’ on p. 35, with inputs [0], [1], [2], and [3,7 : BY];

- [NU5 onward] in §4.2.3 ‘Orchard Key Components’ on p. 37, with inputs [6], [7], [8], and with first byte 0x82
(the last of these is also specified in [ZIP-32]);

- in the processes of sending (§4.7.2 ‘Sending Notes (Sapling)’ on p.43 and §4.7.3 ‘Sending Notes (Orchard)’
on p.44) and of receiving (§4.20 ‘In-band secret distribution (Sapling and Orchard)’ on p.65) notes, with
inputs [4] and [5], and for Orchard [¢] || p with ¢ € {5,4,9};

- in [ZIP-32], with inputs [0], [1], [2] (intentionally matching §4.2.2 on p. 35), [0x10], [0x13], [0x14], and with first
byte in {0x11, 0x12, 0x15, 0x16, 0x17, 0x18, 0x80, 0x81, 0x82, 0x83};

- in [ZIP-316], with first byte 0xDO.

PRFOS2PINg 51y pREOKOd 4re used in §4.20 ‘In-band secret distribution (Sapling and Orchard)’ on p. 65.
PRF"5%P!"8 i5 used in §4.18.2 ‘Spend Statement (Sapling)’ on p.59.
PRF"O7"erd is ysed in §4.18.4 “Action Statement (Orchard) on p.61.

All of these Pseudo Random Functions are instantiated in §5.4.2 ‘Pseudo Random Functions’ on p. 84.
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Security requirements:
- Security definitions for Pseudo Random Functions are given in [BDJR2000, section 4].

- In addition to being Pseudo Random Functions, it is required that PRF2Y", PRF?, PRFI/Prut pRENT2PINg ;1
PRFI'Y"" be collision-resistant across all = — i.e. finding (z,y) # (2, y’) such that PRFX'" (y) = PRFX"(y/)
should not be feasible, and similarly for PRF?, PRF"PeUt pRp"S2PIine o pRrpnforehard,

expand

- See the note in §4.2.3 ‘Orchard Key Components’ on p. 37 for a security caveat about the use of PRF

Non-normative note: PRF"™P°"" was called PRF™" in Zerocash [BCGGMTV2014], and just PRF™ in some previous
versions of this specification.

4.1.3 Pseudo Random Permutations

PRP, denotes a Pseudo Random Permutation keyed by x.
Let £y, and ¢4 be as defined in § 5.3 ‘Constants’ on p.72.

One Pseudo Random Permutation is used for Orchard, to generate diversifiers from a diversifier key and index (an
identical construction is also used for Sapling in [ZIP-32]):

PRPY - IB%YM/*] « B[fd] N B[‘u]_

It is instantiated in §5.4.4 Pseudo Random Permutations’ on p. 86.

Security requirement: PRP? is a keyed Pseudo Random Permutation as defined in [BKR2001].

4.1.4 Symmetric Encryption

Let Sym be an authenticated one-time symmetric encryption scheme with keyspace Sym.K, encrypting plaintexts
in Sym.P to produce ciphertexts in Sym.C.

Sym.Encrypt : Sym. K x Sym.P — Sym.C is the encryption algorithm.

Sym.Decrypt : Sym.K x Sym.C — Sym.P U { L} is the decryption algorithm, such that for any K € Sym.K and
P € Sym.P, Sym.Decrypty, (Sym.Encryptk (P)) = P. L is used to represent the decryption of an invalid ciphertext.

Security requirement: Sym must be one-time (INT-CTXT A IND-CPA)-secure [BN2007]. “One-time” here means
that an honest protocol participant will almost surely encrypt only one message with a given key; however, the
adversary may make many adaptive chosen ciphertext queries for a given key.

415 Key Agreement

A key agreement scheme is a cryptographic protocol in which two parties agree a shared secret, each using their
private key and the other party’s public key.

A key agreement scheme KA defines a type of public keys KA.Public, a type of private keys KA.Private, and a type of
shared secrets KA.SharedSecret. Optionally, it also defines a type KA.PublicPrimeSubgroup C KA.Public.

Sprout
Optional: Let KA.FormatPrivate : BI** | — KA Private be a function to convert a bit string of length £32°"* to a KA
private key.

Let KA.DerivePublic : KA.Private x KA.Public — KA.Public be a function that derives the KA public key corresponding
to a given KA private key and base point.

Let KA.Agree : KA.Private x KA.Public — KA.SharedSecret be the agreement function.
Optional: Let KA.Base : KA.Public be a public base point.

Note: The range of KA.DerivePublic may be a strict subset of KA.Public.
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Security requirements:

- KA.FormatPrivate must preserve sufficient entropy from its input to be used as a secure KA private key.

- The key agreement and the KDF defined in the next section must together satisfy a suitable adaptive security
assumption along the lines of [Bernstein2006, section 3] or [ABR1999, Definition 3].

More precise formalization of these requirements is beyond the scope of this specification.

4.1.6 Key Derivation

A Key Derivation Function is defined for a particular key agreement scheme and authenticated one-time symmetric
encryption scheme; it takes the shared secret produced by the key agreement and additional arguments, and
derives a key suitable for the encryption scheme.

The inputs to the Key Derivation Function differ between the Sprout and Sapling and Orchard KDFs:

KDF*"°" takes as input an output index in {1..N""}, the value hg;,, the shared Diffie-Hellman secret sharedSecret,

the ephemeral public key epk, and the recipient’s public transmission key pkenc. It is suitable for use with KA®P
and derives keys for Sym.Encrypt.

KDFSPUt s (1. N""} x Blsi)  KASP™* SharedSecret x KASP™®“ Public x KA Public — Sym.K

KDF>*Pi" takes as input the shared Diffie-Hellman secret sharedSecret and the ephemeral public key epk. (It does
not have inputs taking the place of the output index, hg;,, or pke,c.) It is suitable for use with KAS#'"e and derives
keys for Sym.Encrypt.

KDF®*"8 : KA SharedSecret x BY“/*) - Sym.K

As in Sapling, KDF®""*" takes as input the shared Diffie-Hellman secret sharedSecret and the ephemeral public key

epk. It is suitable for use with KA°™"* and derives keys for Sym.Encrypt.

KDFOrehard . K ACrehard g aredSecret x BYI#/8l Sym.K

Security requirements:
- The asymmetric encryption scheme in §4.19 In-band secret distribution (Sprout)’ on p.63, constructed
from KAt KDF*P°"* and Sym, is required to be IND-CCA2-secure and key-private.

- The asymmetric encryption scheme in §4.20 Tn-band secret distribution (Sapling and Orchard)’ on p. 65,
constructed from KA>*'"& KDF>*P"& and Sym or from KA?™"™ KDF" " and Sym, is required to be IND-
CCA2-secure and key-private.

Key privacy is defined in [BBDP2001].

4.1.7 Signature

A signature scheme Sig defines:
- atype of signing keys Sig.Private;
- a type of validating keys Sig.Public;
- a type of messages Sig.Message;
- a type of signatures Sig.Signature;
- arandomized signing key generation algorithm Sig.GenPrivate : () % Sig.Private;

- an injective validating key derivation algorithm Sig.DerivePublic : Sig.Private — Sig.Public;
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- arandomized signing algorithm Sig.Sign : Sig.Private x Sig.Message LN Sig.Signature;

- avalidating algorithm Sig.Validate : Sig.Public x Sig.Message x Sig.Signature — B;

such that for any signing key sk <* Sig.GenPrivate() and corresponding validating key vk = Sig.DerivePublic(sk), and
any m : Sig.Message and s : Sig.Signature & Sig.Sign, (m), Sig.Validate,, (m, s) = 1.

Zcash uses four signature schemes:

- one used for signatures that can be validated by script operations such as 0P_CHECKSIG and OP_CHECKMULTISIG
as in Bitcoin;

- one called JoinSplitSig which is used to sign transactions that contain at least one JoinSplit description
(instantiated in §5.4.6 ‘Ed25519” on p. 88);

- [Sapling onward] one called SpendAuthSig which is used to sign authorizations of Spend transfers (instantiated
in §5.4.71 ‘Spend Authorization Signature (Sapling and Orchard)’ on p.93);

- [Sapling onward] one called BindingSig. A Sapling binding signature is used to enforce balance of Spend
transfers and Output transfers, and to prevent their replay across transactions. Similarly, an Orchard binding
signature is used to enforce balance of Action transfers and to prevent their replay. BindingSig is instantiated
for both Sapling and Orchard in § 5.4.7.2 ‘Binding Signature (Sapling and Orchard)’ on p.93.

The signature scheme used in script operations is instantiated by ECDSA on the secp256k1 curve. JoinSplitSig is
instantiated by Ed25519. SpendAuthSig and BindingSig are instantiated by RedDSA; on the Jubjub curve in Sapling,
and on the Pallas curve in Orchard.

The following security property is needed for JoinSplitSig and BindingSig. Security requirements for SpendAuthSig are
defined in the next section, §4.1.7.1 ‘Signature with Re-Randomizable Keys’ on p.28. An additional requirement
for BindingSig is defined in §4.1.7.2 ‘Signature with Signing Key to Validating Key Monomorphism’ on p.29.

Security requirement:  JoinSplitSig and each instantiation of BindingSig must be Strongly Unforgeable under
(non-adaptive) Chosen Message Attack (SU-CMA), as defined for example in [BDEHR2011, Definition 6].° This allows
an adversary to obtain signatures on chosen messages, and then requires it to be infeasible for the adversary to
forge a previously unseen valid (message, signature) pair without access to the signing key.

Non-normative notes:

- We need separate signing key generation and validating key derivation algorithms, rather than the more
conventional combined key pair generation algorithm Sig.Gen : () %, Sig.Private x Sig.Public, to support the key
derivation in §4.2.2 ‘Sapling Key Components’ on p.35 and in §4.2.3 ‘Orchard Key Components’ on p.37.
The definitions of schemes with additional features in §4.1.7.1 ‘Signature with Re-Randomizable Keys’ on

p-28 and in §4.1.7.2 ‘Signature with Signing Key to Validating Key Monomorphism’ on p.29 also become
simpler.

- A fresh signature key pair is generated for each transaction containing a JoinSplit description. Since each
key pair is only used for one signature (see §4.11 ‘Non-malleability (Sprout)’ on p.50), a one-time signature
scheme would suffice for JoinSplitSig. This is also the reason why only security against non-adaptive chosen
message attack is needed. In fact the instantiation of JoinSplitSig uses a scheme designed for security under
adaptive attack even when multiple signatures are signed under the same key:.

- [Sapling onward] The same remarks as above apply to BindingSig, except that the key is derived from the
randomness of value commitments. This results in the same distribution as of freshly generated key pairs, for
each transaction containing Spend descriptions or Output descriptions or Action descriptions.

- SU-CMA security requires it to be infeasible for the adversary, not knowing the private key, to forge a distinct
signature on a previously seen message. That is, JoinSplit signatures and Sapling binding signatures and
Orchard binding signatures are intended to be nonmalleable in the sense of [BIP-62].

- The terminology used in this specification is that we “validate” signatures, and “verify” zk-SNARK proofs.

® The scheme defined in that paper was attacked in [LM2017], but this has no impact on the applicability of the definition.
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4.1.71 Signature with Re-Randomizable Keys
A signature scheme with re-randomizable keys Sig is a signature scheme that additionally defines:
- atype of randomizers Sig.Random;
- a randomizer generator Sig.GenRandom : () = Sig.Random;
- a signing key randomization algorithm Sig.RandomizePrivate : Sig.Random x Sig.Private — Sig.Private;
- a validating key randomization algorithm Sig.RandomizePublic : Sig.Random x Sig.Public — Sig.Public;

- adistinguished “identity” randomizer Os;; random * Sig.Random
such that:

- for any « : Sig.Random, Sig.RandomizePrivate,, : Sig.Private — Sig.Private is injective and easily invertible;

- Sig.RandomizePrivatep, . . is the identity function on Sig.Private.

- for any sk : Sig.Private,
Sig.RandomizePrivate(a, sk) : o < Sig.GenRandom()
is identically distributed to Sig.GenPrivate().

- for any sk : Sig.Private and « : Sig.Random,
Sig.RandomizePublic(«, Sig.DerivePublic(sk)) = Sig.DerivePublic(Sig.RandomizePrivate(a, sk)).

The following security requirement for such signature schemes is based on that given in [FKMSSS2016, section 3].
Note that we require Strong Unforgeability with Re-randomized Keys, not Existential Unforgeability with Re-
randomized Keys (the latter is called “Unforgeability under Re-randomized Keys” in [FKMSSS2016, Definition 8]).
Unlike the case for JoinSplitSig, we require security under adaptive chosen message attack with multiple messages
signed using a given key. (Although each note uses a different re-randomized key pair, the same original key pair
can be re-randomized for multiple notes, and also it can happen that multiple transactions spending the same
note are revealed to an adversary.)

Security requirement: Strong Unforgeability with Re-randomized Keys under adaptive Chosen Message Attack
(SURK-CMA)

For any sk : Sig.Private, let

O,y ¢ Sig.Message x Sig.Random — Sig.Signature

be a signing oracle with state @ : 9P(Sig.Message x Sig.Signature) initialized to {} that records queried messages
and corresponding signatures.

Oy :=let mutable @ + {} in (m : Sig.Message, « : Sig.Random) —
leto = Sig'SignSig.RandomizePrivate(a,sk) (m)

setQ + QU {(m,o)}

return o : Sig.Signature.

For random sk < Sig.GenPrivate() and vk = Sig.DerivePublic(sk), it must be infeasible for an adversary given vk and
a new instance of O to find (m’, 0", a’) such that Sig.Validateg,, ¢, aomizepublic(a’.vi) (@) = L and (m’,0") & Og.Q.
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Non-normative notes:

- The randomizer and key arguments to Sig.RandomizePrivate and Sig.RandomizePublic are swapped relative to
[FKMSSS2016, section 3].

- The requirement for the identity randomizer Os;g rangom Simplifies the definition of SURK-CMA by removing
the need for two oracles (because the oracle for original keys, called O, in [FKMSSS2016], is a special case of
the oracle for randomized keys).

. Since Sig.RandomizePrivate(c, sk) : a <= Sig.Random has an identical distribution to Sig.GenPrivate(), and since
Sig.DerivePublic is a deterministic function, the combination of a re-randomized validating key and signature(s)
under that key do not reveal the key from which it was re-randomized.

- Since Sig.RandomizePrivate,, is injective and easily invertible, knowledge of Sig.RandomizePrivate(«, sk) and o
implies knowledge of sk.

4.1.7.2 Signature with Signing Key to Validating Key Monomorphism

A signature scheme with key monomorphism Sig is a signature scheme that additionally defines:
- an abelian group on signing keys, with operation | : Sig.Private x Sig.Private — Sig.Private and identity Og;
- an abelian group on validating keys, with operation & : Sig.Public x Sig.Public — Sig.Public and identity O

such that for any sk, , : Sig.Private, Sig.DerivePublic(sk; B sky) = Sig.DerivePublic(sk;) € Sig.DerivePublic(sks).

In other words, Sig.DerivePublic is a monomorphism (that is, an injective homomorphism) from the signing key
group to the validating key group.

For N :N*,

N

. EB sk; means sk; B sko H - - - H sky;
1=1
N
. @ vk; means vk; ¢ vky @ - - - & vky.
=1
0 0
When N = 0 these yield the appropriate group identity, i.e. EB sk; = O and @ vk; = Og,.
=1 =1
H sk means the signing key such that (Hsk) B sk = Og, and sk; B sk, means sk; B (Hsks).
<& vk means the validating key such that (G vk) G vk = Og,, and vk; & vk, means vk; § (S vk,).
With a change of notation from p to Sig.DerivePublic, + to B, and - to 4>, this is similar to the definition of a “Signature

with Secret Key to Public Key Homomorphism” in [DS2016, Definition 13], except for an additional requirement for
the homomorphism to be injective.

Security requirement: For any sk; : Sig.Private, and an unknown sk, & Sig.Gen Private() chosen independently
of sky, the distribution of sk; B sk, is computationally indistinguishable from that of Sig.GenPrivate(). (Since H

is an abelian group operation, this implies that for n : N, EB sk; is computationally indistinguishable from
i=1

Sig.GenPrivate() when at least one of sk; ,, is unknown.)

41.8 Commitment

A commitment scheme is a function that, given a commitment trapdoor generated at random and an input, can be
used to commit to the input in such a way that:

- no information is revealed about it without the trapdoor (*hiding”); and

- given the trapdoor and input, the commitment can be verified to “open” to that input and no other ("binding”).

A commitment scheme COMM defines a type of inputs COMM.Input, a type of commitments COMM.Output, a type
of commitment trapdoors COMM.Trapdoor, and a trapdoor generator COMM.GenTrapdoor : () &, COMM.Trapdoor.

Let COMM : COMM.Trapdoor x COMM.Input — COMM.Output be a function satisfying the following security
requirements.
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Security requirements:

. Computational hiding: For all z, z' : COMM.Input, the distributions { COMM,.(z) | » <~ COMM.GenTrapdoor() }
and { COMM,.(z) | r & COMM.GenTrapdoor() } are computationally indistinguishable.

. Computational binding: It is infeasible to find x, 2’ : COMM.Input and , 7’ : COMM.Trapdoor such that z # '
and COMM,.(z) = COMM ,(z").

Notes:
- COMM.GenTrapdoor need not produce the uniform distribution on COMM.Trapdoor. In that case, it is incorrect
to choose a trapdoor from the latter distribution.

. If it were only feasible to find 2 : COMM.Input and 7,7’ : COMM.Trapdoor such that r # r" and COMM,.(z) =

COMM, /(x), this would not contradict the computational binding security requirement. (In fact, this is feasible

Sapling

for NoteCommit and ValueCommit>*"™" because trapdoors are equivalent modulo 7}, and the range of a

Sapling ,Sapling
trapdoor for those algorithms is {0 .. 2= —1} where 2% > r;)

Let (3Preut, goProut ySPreut and 4., be as defined in §5.3 ‘Constants’ on p.72.

Sprout Sprout]

Define NoteCommit>P" . Trapdoor := Bl | and NoteCommit>™°".Output := Blmerel

Sprout uses a note commitment scheme

Sprout

Sprout
NoteCommit>™°"* : NoteCommit>™°"" Trapdoor x BIPrr | x {0.. 2%me—1} x Bleer ]
— NoteCommit>™°“ . Output,

instantiated in §5.4.8.1 ‘Sprout Note Commitments’ on p.93.

Let (2°P'"8 be as defined in §5.3 ‘Constants’ on p.72.
Let J", ¢;, and r; be as defined in §5.4.9.3 ‘Jubjub’ on p.100.
Define:

NoteCommit>**""& Trapdoor := {0.. 2@;72:%71} and NoteCommit>*P""€ Qutput := J;

. Saplin, .
ValueCommit>*""& Trapdoor := {0... 26“53’11} and ValueCommit>*"™ Qutput := J.

Sapling uses two additional commitment schemes:

NoteCommit>®™™ : NoteCommit>*™""¢ Trapdoor x B4 x BI%) x {0..2%m_1} — NoteCommit>**™"& Qutput

ValueCommit>2P'ine

.. Sapli S T .. Sapli
: ValueCommit>*™""8 Trapdoor x (-~ .. 5=} — ValueCommit>*"""€ Output

Sapling -

Sapling .
apling is

NoteCommit is instantiated in §5.4.8.2 ‘Windowed Pedersen commitments’ on p.94, and ValueCommit
instantiated in §5.4.8.3 ‘Homomorphic Pedersen commitments (Sapling and Orchard)’ on p. 95.

Sapling Sapling

Non-normative note: NoteCommit and ValueCommit always return points in the subgroup J ™) However,
we declare the type of these commitment outputs to be J because they are not directly checked to be in the
subgroup when ValueCommit>"'"& outputs appear in Spend descriptions and Output descriptions, or when the cmu
field derived from a NoteCommit>*P""€ appears in an Output description.
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Let (27" he as defined in § 5.3 ‘Constants’ on p.72.

“scalar

Let P, #p, gp, and rp be as defined in §5.4.9.6 ‘Pallas and Vesta’ on p.103.
Define:

Orchard
alar

NoteCommit®""™ Trapdoor := {0.. 2% —1} and NoteCommit®™" Qutput := P U {L};
.. Orchard L (Orchard .. Orchard L
ValueCommit .Trapdoor := {0..2"= —1} and ValueCommit .Output :=P.

. ,Orchard .
Commit™ Trapdoor := {0.. 2% —1} and Commit™*.Output := {0..¢p — 1} U {L}.

Orchard uses three additional commitment schemes:
NoteCommit®™™ : NoteCommit®™"® Trapdoor x Bl x B! x {0.. 2%me—1}
x F,, x F, — NoteCommit

ValueCommit®™" : ValueCommit®"* Trapdoor x {f”‘“;l . ”‘“271} — ValueCommit®™ " Output
ivk ivk

Orchenrd.C)thput

Commit"™ : Commit .Trapdoor x {0..qp — 1} X F, — Commit

. .Output

Notes:

Orchard

- NoteCommit and Commit™* can return L (with insignificant probability).

. Commit™™ can return 0 (with insignificant probability) even though that is not a valid KA°""" private key.
The use of Commit™ to obtain an Orchard incoming viewing key in §4.2.3 ‘Orchard Key Components’ on
p. 37 explicitly accounts for the 0 and L cases. Use of Commit™ in the Action circuit does not require special
handling of the 0 case.

Orchard Orchard

NoteCommit and Commit™* are instantiated in §5.4.8.4 ‘Sinsemilla commitments’ on p.96. ValueCommit
is instantiated in § 5.4.8.3 ‘Homomorphic Pedersen commitments (Sapling and Orchard)’ on p.95.

4.19 Represented Group

A represented group G consists of:
- a subgroup order parameter r : N*, which must be prime;
- a cofactor parameter hg : NT;
- agroup G of order hg - rg, written additively with operation + : G x G — G, and additive identity Og;
- a bit-length parameter {; : N;
- arepresentation function reprg : G — Bl and an abstraction function abst¢ : B - G U {1}, such that

abstg is a left inverse of repr, i.e. for all P € G, abstg (reprg (P)) = P.

Note: Ideally, we would also have that for all S not in the image of repr, abstg (S) = L. This may not be true in all
cases, i.e. there can be non-canonical encodings P* such that reprg (abstg (Px)) # Px.

Define G as the order-rg subgroup of G, which is called a represented subgroup. Note that this includes Og. For
the set of points of order rg (which excludes Og), we write GO~

Define Giﬂ) = {reprg (P) : Blée] | P e GM}. (This intentionally excludes non-canonical encodings if there are any.)
For G : G we write —G for the negation of G, such that (—G) + G = Og. We write G — H for G + (—H).

We also extend the Y  notation to addition on group elements.
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For G : G and k : Z we write [k] G for scalar multiplication on the group, i.e.
k
Z,_la, if k>0
k]G = l__k

Zi:l(_G)’ otherwise.

For G : G and a : I, _, we may also write [a] G meaning [a mod 7] G as defined above. (This variant is not defined
for fields other than I, )

4.1.10 Coordinate Extractor

A coordinate extractor for a represented group G is a function Extract ¢ : G") — T for some type T'.

G®

Note:  Unlike the representation function reprg, Extract ,«» need not have an efficiently computable left inverse.

4.1.11 Group Hash

Given a represented subgroup G"a family of group hashes into the subgroup, denoted Grou pHashG(T) , consists of:
- atype GroupHasth .URSType of Uniform Random Strings;
- atype GroupHashG(r) .Input of inputs;
- afunction GroupHashG@ : GroupHashG(r) .URSType x GroupHasth Input — G".

In §5.4.9.5 ‘Group Hash into Jubjub’ on p.102, we instantiate a family of group hashes into the Jubjub curve defined
by §5.4.9.3 Jubjub’ on p.100.

®
Security requirement:  For a randomly selected URS : GroupHash® .URSType, it must be reasonable to model

@
GroupHash(S’Rs (restricted to inputs for which it does not return L) as a random oracle.

In §5.4.9.8 ‘Group Hash into Pallas and Vesta’ on p.105, we instantiate group hashes into the Pallas and Vesta
curves. These are not strictly speaking families of group hashes, because they have a trivial URS, and so the above
security definition does not apply. Nevertheless, they can be heuristically modelled as random oracles.

Non-normative notes:

)+ .
- GroupHash” * is used to obtain generators of the Jubjub curve for various purposes: the bases G>**"" and

H>P"E ysed in Sapling key generation, the Pedersen hash defined in §5.4.1.7 ‘Pedersen Hash Function’ on
p.77, and the commitment schemes defined in §5.4.8.2 ‘Windowed Pedersen commitments’ on p.94 and in
§5.4.8.3 ‘Homomorphic Pedersen commitments (Sapling and Orchard)’ on p.95.

The security property needed for these uses can alternatively be defined in the standard model as follows:

®
Discrete Logarithm Independence: For a randomly selected member Grou pHash(S’RS of the family, it is infeasible

"l and a sequence of nonzero z;_,, : F;. ]

g

&
to find a sequence of distinct inputs m;_,, : GroupHashG Input

n )
such that Zzzl([xl] GroupHashE’RS(mi)) = Og.

- Under the Discrete Logarithm assumption on G"), a random oracle almost surely satisfies Discrete Logarithm
Independence. Discrete Logarithm Independence implies collision resistance, since a collision (m,m,) for

@
GroupHashS’RS trivially gives a discrete logarithm relation with ; = 1 and z, = —1.
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() * .
. GroupHash’  is used in §5.4.1.6 ‘DiversifyHash>*"""8 gnd DiversifyHash®"™ Hash Functions’ on p.76 to in-
stantiate DiversifyHash>*"™™ We do not know how to prove the Unlinkability property defined in that section

in the standard model, but in a model where GroupHasth* (restricted to inputs for which it does not return
1) is taken as a random oracle, it is implied by the Decisional Diffie-Hellman assumption on J ™ and similarly
for GroupHash”.

- URS is a Uniform Random String; we chose it verifiably at random (see § 5.9 ‘Randomness Beacon’ on p.117),
after fixing the concrete group hash algorithm to be used. This mitigates the possibility that the group hash
algorithm could have been backdoored. For Orchard, we considered a URS to be unnecessary, because we
follow [ID-hashtocurve] which does not use one.

4.1.12 Represented Pairing

A represented pairing PaIr consists of:
- a group order parameter rp,;; : N* which must be prime;

- two represented subgroups IPA]DR(;)Q, both of order rp,y;

- agroup ]P’A]IR(TT) of order rp,,, written multiplicatively with operation - : IP’AJIR(TT) X ]P’A]IRS:) — PA]IRS:) and group
identity 1p,p;
- three generators PPAHR1,2,T of ]P’MR&T respectively;
. a pairing function ép,y, : Par\” x Pa{’ — Pame) satisfying:
- (Bilinearity) foralla,b: F%, P: Par'”, and Q : PaRY?, épe([a] P, [] Q)= épue(P, Q)" and

- (Nondegeneracy) there does not exist P : ]P’A]I]Rgr)* such that forall @ : Mmg), epam (P, Q) = Lpup.

4113 Zero-Knowledge Proving System

A zero-knowledge proving system is a cryptographic protocol that allows proving a particular statement, dependent
on primary and auxiliary inputs, in zero knowledge — that is, without revealing information about the auxiliary
inputs other than that implied by the statement. The type of zero-knowledge proving system needed by Zcash is a
preprocessing zk-SNARK [BCCGLRT2014].

A preprocessing zk-SNARK instance ZK defines:
- atype of zero-knowledge proving keys, ZK.ProvingKey;
- atype of zero-knowledge verifying keys, ZK VerifyingKey;
- atype of primary inputs ZK.Primarylnput;
- atype of auxiliary inputs ZK.Auxiliarylnput;
- atype of zk-SNARK proofs ZK.Proof;
- atype ZK.SatisfyingInputs C ZK.Primarylnput x ZK.Auxiliarylnput of inputs satisfying the statement;
- arandomized key pair generation algorithm ZK.Gen : () % ZK.ProvingKey x ZK.VerifyingKey;
- a proving algorithm ZK.Prove : ZK.ProvingKey x ZK.Satisfyinglnputs — ZK.Proof;
- a verifying algorithm ZK.Verify : ZK.VerifyingKey x ZK.Primarylnput x ZK.Proof — B;

The security requirements below are supposed to hold with overwhelming probability for (pk, vk) < ZK.Gen().
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Security requirements:
- Completeness: An honestly generated proof will convince a verifier: for any (x,w) € ZK.Satisfyinglnputs, if
ZK.Prove (z,w) outputs m, then ZK.Verify,, (z,7) = 1.

- Knowledge Soundness: For any adversary A able to find an = : ZK.Primarylnput and proof 7 : ZK.Proof
such that ZK Verify,, (z,7) = 1, there is an efficient extractor £, such that if £ (vk, pk) returns w, then the
probability that (x,w) ¢ ZK.Satisfyinglnputs is insignificant.

- Statistical Zero Knowledge: An honestly generated proof is statistical zero knowledge. That is, there is a
feasible stateful simulator S such that, for all stateful distinguishers D, the following two probabilities are not
significantly different:

(pk, vk) <& ZK.Gen() (pk, vk) & 8()
R (z,w) € ZK.Satisfyinglnputs R
(x,w) < D(pk,vk) and Pr (2, w) + D(pk,vk)

D(m) =1
& ZK.Prove (z,w) ) & S(x)

(z,w) € ZK.Satisfyinglnputs
D(r) =1

Pr

These definitions are derived from those in [BCTV2014b, Appendix C|, adapted to state concrete security for a fixed
circuit, rather than asymptotic security for arbitrary circuits. (ZK.Prove corresponds to P, ZK.Verify corresponds
to V, and ZK.Satisfyinglnputs corresponds to R in the notation of that appendix.)

The Knowledge Soundness definition is a way to formalize the property that it is infeasible to find a new proof
7w where ZK Verify,, (x,7) = 1 without knowing an auxiliary input w such that (z, w) € ZK.SatisfyingInputs. Note
that Knowledge Soundness implies Soundness — i.e. the property that it is infeasible to find a new proof = where
ZK.Verify,, (z,m) = 1 without there existing an auxiliary input w such that (z, w) € ZK.Satisfyinglnputs.

Non-normative notes:

- The above properties do not include nonmalleability [DSDCOPS2001], and the design of the protocol using
the zero-knowledge proving system must take this into account.

- The terminology used in this specification is that we “validate” signatures, and “verify” zk-SNARK proofs.

Zcash uses three proving systems:

- BCTV14 (§5.4.10.1 ‘BCTV14’ on p.108) is used with the BN-254 pairing (§5.4.9.1 ‘BN-254’ on p.97), to prove
and verify the Sprout JoinSplit statement (§4.18.1 ‘JoinSplit Statement (Sprout)’ on p.58) before Sapling
activation.

- Groth16 (§5.4.10.2 ‘Groth16’ on p.109) is used with the BLS12-381 pairing (§ 5.4.9.2 ‘BLS12-381" on p.99), to
prove and verify the Sapling Spend statement (§4.18.2 ‘Spend Statement (Sapling)’ on p.59) and Output
statement (§4.18.3 ‘Output Statement (Sapling)’ on p.60). It is also used to prove and verify the JoinSplit
statement after Sapling activation.

- [NUS5 onward] Halo 2 (§5.4.10.3 ‘Halo 2’ on p.110) is used with the Vesta curve (§5.4.9.6 ‘Pallas and Vesta’ on
p.103) to prove and verify the Orchard Action statement (§4.18.4 ‘Action Statement (Orchard)’ on p. 61).

These specializations are:
- ZKJoinSplit for the Sprout JoinSplit statement (with BCTV14 and BN-254, or Groth16 and BLS12-381);
- ZKSpend for the Sapling Spend statement and ZKOutput for the Sapling Output statement;
- [NU5 onward] ZKAction for the Orchard Action statement.

We omit key subscripts on ZKJoinSplit.Prove and ZKJoinSplit.Verify, taking them to be either the BCTV14 proving
key and verifying key defined in §5.7 ‘BCTV14 zk-SNARK Parameters’ on p.117, or the sprout-groth16.params
Groth16 proving key and verifying key defined in §5.8 ‘Groth16 zk-SNARK Parameters’ on p.117, according to
whether the proof appears in a block before or after Sapling activation.

We omit subscripts on ZKSpend.Prove, ZKSpend.Verify, ZKOutput.Prove, and ZKOutput.Verify, taking them to be the
relevant Groth16 proving keys and verifying keys defined in §5.8 ‘Groth16 zk-SNARK Parameters’ on p.117.

We also omit subscripts on ZKAction.Prove and ZKAction.Verify. For Halo 2, parameters for a given circuit imple-
mentation are generated on the fly by the halo2 library, and do not require parameter files.
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4.2 Key Components
4.2.1 Sprout Key Components

Let £, be as defined in § 5.3 ‘Constants’ on p.72.
Let PRF*" be a Pseudo Random Function, instantiated in § 5.4.2 ‘Pseudo Random Functions’ on p. 84.

Let KA be a key agreement scheme, instantiated in § 5.4.5.1 ‘Sprout Key Agreement’ on p. 86.

A new Sprout spending key a is generated by choosing a bit sequence uniformly at random from Bl
apks SKenc and pke, are derived from ay as follows:
ddr
apk := PRF;°7(0)
Skene i = KASpm”t.FormatPrivate(PRindr(l))
Pkene := KA DerivePublic(sken, KA®P™" Base).

4.2.2 Sapling Key Components

Let {pRrexpand: Lsk- éis\,ipli“gi ok and ¢4 be as defined in § 5.3 ‘Constants’ on p.72.

Y e ()=
Let J, @, Ji), repry, and r be as defined in §5.4.9.3 Jubjub’ on p.100, and let FindGroupHash“U be as defined in
§5.4.9.5 ‘Group Hash into Jubjub’ on p.102.

Let PRF®®™™ and PRF“?Pi"¢ instantiated in §5.4.2 Pseudo Random Functions’ on p.84, be Pseudo Random
Functions.

Let KA>*'"8 instantiated in §5.4.5.3 ‘Sapling Key Agreement’ on p. 87, be a key agreement scheme.
Let CRHY  instantiated in §5.4.1.5 ‘CRH"* Hash Function’ on p.75, be a hash function.

Let DiversifyHash®>*"™ instantiated in § 5.4.1.6 ‘DiversifyHash>*™"8 and DiversifyHash®"*"® Hash Functions’ on p.76,
be a hash function.

Let SpendAuthSig>*™™™ instantiated in §5.4.71 ‘Spend Authorization Signature (Sapling and Orchard) on p.93,
be a signature scheme with re-randomizable keys.

Let LEBS20SP : (£ : N) x Bl — Byleine/®)] ang LEOS2IP ¢ (£ : N| £mod 8 = 0) x BY/®l 5 {0..2°~1} be as
defined in § 5.1 ‘Integers, Bit Sequences, and Endianness’ on p.71.
. (M=
Define #>*""™ .= FindGroupHash®  (“Zcash_H_","")
Define ToScalar®®™g(y : BY‘Prrewmna/Sly . — LEOS2IP,, . . (z) (mod ry).

A new Sapling spending key sk is generated by choosing a bit sequence uniformly at random from Blé,

From this spending key, the Spend authorizing key ask : ;. , the proof authorizing key nsk : F, , and the outgoing
viewing key ovk ¢ BYlfw/8] are derived as follows:
ask := ToScaIarsap“”g(PRF:Epa"d([0]))
nsk := ToScaIarsap”ng(PRF:;PQ"d([1]))
ovk := truncate(,_, /s (PRFE:pa"d([Z]))
If ask = 0, discard this key and repeat with a new sk.
ak : J7* nk : J” and the incoming viewing key ivk : {0.. 2éiakpli"g—1} are then derived as:
ak := SpendAuthSig>**""€ DerivePublic(ask)
nk := [nsk] #>*""e
ivk := CRH" (repry(ak), repry(nk)).
Ifivk = 0, discard this key and repeat with a new sk.
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As explained in § 3.1 Payment Addresses and Keys’ on p.12, Sapling allows the efficient creation of multiple
diversified payment addresses with the same spending authority. A group of such addresses shares the same full
viewing key and incoming viewing key.

To create a new diversified payment address given an incoming viewing key ivk, repeatedly pick a diversifier d

uniformly at random from B! until the diversified base gy = DiversifyHash®*"""&(d) is not L. Then calculate the
diversified transmission key pky:

pky := KA>®'M8 DerivePublic(ivk, gg ).
The resulting diversified payment address is (d : B! pky : KAS?P" PyblicPrimeSubgroup).

For each spending key, there is also a default diversified payment address with a “random-looking” diversifier.
This allows an implementation that does not expose diversified addresses as a user-visible feature, to use a default
address that cannot be distinguished (without knowledge of the spending key) from one with a random diversifier
as above. Note however that the zcashd wallet picks diversifiers as in [ZIP-32], rather than using this procedure.

Let first : (BY — TU{L}) - T U{L} be as defined in §5.4.9.5 ‘Group Hash into Jubjub’ on p.102. Define:

1, if DiversifyHash®*"¢(d) = 1

CheckDiversifier(d : IB%[M) = i
d, otherwise

DefaultDiversifier(sk : Bl := first(i : BY — CheckDiversifier(truncate(gd/s)(PRF::pand([?), i)« 30U {1}).

For a random spending key, DefaultDiversifier returns | with probability approximately 2~%°°; if this happens, discard

the key and repeat with a different sk.

Notes:

- The protocol does not prevent using the diversifier d to produce “vanity” addresses that start with a meaningful
string when encoded in Bech32 (see §5.6.3.1 ‘Sapling Payment Addresses’ on p.113). Users and writers of
software that generates addresses should be aware that this provides weaker privacy properties than a
randomly chosen diversifier, since a vanity address can obviously be distinguished, and might leak more
information than intended as to who created it.

- Similarly, address generators MAY encode information in the diversifier that can be recovered by the recipient
of a payment to determine which diversified payment address was used. It is RECOMMENDED that such
diversifiers be randomly chosen unique values used to index into a database, rather than directly encoding
the needed data.

Non-normative notes:

. Assume that PRF®®™ is a PRF with output range BY*rrewns/8] here 2frrerand s Jarge compared to r;.
Define f : B x BYYl — F, by f,(t) := ToScalar*®"™8(PRF§™™ t)).

fisalsoa PRFsince LEOS2IP,, B Fprrecpans /8] _ {0.. 2%rrewnd_ 1} i injective; the bias introduced by reduc-
tion modulo 7} is small because §5.3 ‘Constants’ on p.72 defines {preexpand @s 512, while rj has length 252 bits.
It follows that the distribution of ask, i.e. PRFE®2"([0]) : sk & Bl is computationally indistinguishable from
SpendAuthSig®*"" GenPrivate() defined in § 5.4.7.1 ‘Spend Authorization Signature (Sapling and Orchard)
on p.93.

- The distribution of nsk, i.e. ToScalar>®®"™(PRFEP™ ([1])) : sk & B! is computationally indistinguishable

from the uniform distribution on F,. . Since nsk : F, + repr;([nsk] F>2pline . J],(:)) is bijective, the distribution of

repr;(nk)will be computationally indistinguishable from uniform on JS:) (the keyspace of PRF"®2pling)
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4.2.3 Orchard Key Components

Let £pRrrexpand: £sk Lovk: L4, and £y, be as defined in §5.3 ‘Constants’ on p.72.

Let P, reprp, £p, gp, and rp be as defined in §5.4.9.6 ‘Pallas and Vesta’ on p.103.

Let Extractp be as defined in §5.4.9.7 ‘Coordinate Extractor for Pallas’ on p.104.

Let GroupHash" be as defined in §5.4.9.8 ‘Group Hash into Pallas and Vesta’ on p.105.

Let PRF*®™™ and PRF°*9™" he as defined in §5.4.2 ‘Pseudo Random Functions’ on p. 84.

Let DerivelnternalFVK®™ "™ be as defined in [ZIP-32, Orchard internal key derivation].

Let PRPY : Bt/ 5 Bl _; Bl e as defined in §5.4.4 ‘Pseudo Random Permutations’ on p. 86.
Let KA®™" instantiated in §5.4.5.5 ‘Orchard Key Agreement’ on p.88, be a key agreement scheme.
ivk

Let Commit™, instantiated in § 5.4.8.4 ‘Sinsemilla commitments’ on p. 96, be a commitment scheme.

Let DiversifyHash®" " be as defined in § 5.4.1.6 ‘DiversifyHash>*"""& qnd DiversifyHash®" " Hash Functions’ onp.76.

Let SpendAuthSig®™ " instantiated in § 5.4.7.1 ‘Spend Authorization Signature (Sapling and Orchard)’ on p.93
be a signature scheme with re-randomizable keys.

Let I2LEBSP, I2LEOSP, and LEOS2IP be as defined in § 5.1 Integers, Bit Sequences, and Endianness’ on p.71.

Define ToBaseO'Chard(x . BY[EPRFexpand/S]) = [_EOS2|PZPRFexpand (x) (mod gp).
Define —I—OscalarOrchard(m . BY[ZPRFexpand/g]) - |_EOSQ|PZPRFeXpMd (x) (mod T]P’)'

A new Orchard spending key sk is generated by choosing a bit sequence uniformly at random from Bl

From this spending key, the Spend authorizing key ask : F;_, the Spend validating key ak : {0 .. gp — 1}, the nullifier

MK randomness rivk : F,.. the diversifier key dk : BY“/8) the KAC™" private key
[‘eovk/8

deriving key nk : I, , the Commit

ivk : {1..¢gp — 1}, the outgoing viewing key ovk : BY } and corresponding “internal” keys are derived as follows:

let mutable ask « ToScaIarorChard(PRFE:pa”d([6]))
let nk = ToBase”""™(PRFEP™([7))
let rivk = ToScaIarorChard(PRF::pa"d([8]))
if ask = 0, discard this key and repeat with a new sk.
let ak” = SpendAuthSig®"*™. DerivePublic(ask)
if the last bit (that is, the 7 bit) of reprp(ak”) is 1:
set ask < —ask
let ak = Extractp(ak’)
let ivk = Commit'¥¥, (ak, nk)
ifivk € {0, L}, discard this key and repeat with a new sk.
let K = I2LEBSP,, (rivk)
let R = PRFSP™™ ((0x82] || 12LEOSP 54 (ak) || I2LEOSP 54 (nk))
let dk be the first /4 /8 bytes of R and let ovk be the remaining ¢, /8 bytes of R.
let (akinternals NKinternals VKinternal) = DerivelnternalFVK®™ " (ak, nk, rivk)
let ivkinternal = Commitir\i/\l/(ki"tema, (akinternal> NKinternal)
if iVKinternal € {0, L}, discard this key and repeat with a new sk.
let Kipternal = 12LEBSP,_ (rivKingernal)
let Rinternal = PRF%pandl ([0X82] || I2LEOSP 56 (akinternal) || I2LEOSP256(nkinternal))

interna

let dkipternal be the first £y, /8 bytes of Ry iermar and let ovkipiemal be the remaining 4., /8 bytes of R emal-
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Note: akinternal = ak and r]kinternal = nk.

As explained in § 3.1 Payment Addresses and Keys’ on p.12, Orchard allows the efficient creation of multiple
diversified payment addresses with the same spending authority. A group of such addresses shares the same full
viewing key, incoming viewing key, and outgoing viewing key.

To create a new diversified payment address given an incoming viewing key (dk, ivk), pick a diversifier index index

uniquely from Bl). Then calculate the diversifier d and the diversified transmission key pkg:

d := PRPY, (index)
g4 := DiversifyHash®™"(d)
pky := KA DerivePublic(ivk, g4).

The resulting diversified payment address is (d : B pky : KA®™"" pyblic).
The diversified payment address with diversifier index 0 is called the default diversified payment address.

Notes:
- Diversifier indices SHOULD NOT be chosen at random. [ZIP-32] specifies their usage in the context of
hierarchical deterministic wallets.

- Address generators MAY encode information in the diversifier index that can be recovered by the recipient
of a payment, given the diversifier key.

- rivk is used both as a randomizer for Commit™*, and as a key for PRF®®*™ to derive dk and ovk. If dk and
ovk are known to an adversary, then this reuse prevents proving that the use of Commit"* in this context is
perfectly hiding. It is also not sufficient to model PRF*®*™ only as a PRF. In practice, we believe it would be
extremely surprising if there were an exploitable interaction between scalar multiplication used in Commit™,
and BLAKE2b used to instantiate PRF®P™™ It is possible, albeit somewhat inelegantly, to model this usage by

ajoint assumption on Pallas scalar multiplication and PRF®®" |

Non-normative notes:

Orchard Orchard

- The uses of ToScalar and ToBase produce output that is uniform on F,_ and I, respectively when
applied to random input, by a similar argument to that used in §4.2.2 ‘Sapling Key Components’ on p. 35.

. The output of Commit'™* is the affine-short-Weierstrass x-coordinate of a Pallas curve point, which we then

use as a KA?™"™ private key ivk for note encryption. The fact that ivk is non-uniform on F,, (since it can only
take on roughly half of the possible values) is not expected to cause any security issue.

4.3 JoinSplit Descriptions
A JoinSplit transfer, as specified in § 3.5 “JoinSplit Transfers and Descriptions’ on p.18, is encoded in transactions
as a JoinSplit description.

Each transaction includes a sequence of zero or more JoinSplit descriptions. When this sequence is non-empty,
the transaction also includes encodings of a JoinSplitSig public validating key and signature.

Let £Prout oprovt pe g, N9 N™", and MAX_MONEY be as defined in §5.3 ‘Constants’ on p.72.
Let hSigCRH be as defined in §4.1.1 ‘Hash Functions’ on p.23.

Let NoteCommit>™*" be as defined in §4.1.8 ‘Commitment’ on p. 29.

Let KA®P™"' e as defined in §4.1.5 ‘Key Agreement’ on p. 25.

Let Sym be as defined in § 4.1.4 ‘Symmetric Encryption’ on p. 25.

Let ZKJoinSplit be as defined in §4.1.13 Zero-Knowledge Proving System’ on p. 33.
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t cold
A JoinSplit description comprlses( pub, ;E‘g,rts"m” nf{ (o, cmM1° e, epk, randomSeed, h, o, Tz joinsplies C1 e )

where
g'fb {0.. MAX_MONEY} is the value that the JoinSplit transfer removes from the transparent transaction
value pool;

new

Voub ¢ 10 .. MAX_MONEY} is the value that the JoinSplit transfer inserts into the transparent transaction value
pool;

Sprout]

rtPoU ; Blveniel is an anchor, as defined in § 3.4 “Transactions and Treestates’ on p.17, for the output treestate

of either a previous block, or a previous JoinSplit transfer in this transaction.

Sprout] [Nold ]

. nf‘l’ldNom - Blferr is the sequence of nullifiers for the input notes;

- em® e 2 NoteCommit™™"" Output!™ ! is the sequence of note commitments for the output notes;

- epk : KA Public is a key agreement public key, used to derive the key for encryption of the transmitted
notes ciphertext (§4.19 ‘In-band secret distribution (Sprout)’ on p.63);

- randomSeed : B!« is a seed that must be chosen independently at random for each JoinSplit description;

Sprout old
< h et Bléere 1N s o sequence of tags that bind hg;, to each a, of the input notes;

- TzKkJoinsplit « ZKJoinSplit.Proof is a zk proof with primary input (r£5ProUt nfod cm] <y rew vp'fb, Voub > Nsigs N, o)

for the JoinSplit statement defined in §4.18.1 ‘JoinSplit Statement (Sprout)’ on p.58 (this is a BCTV14 proof
before Sapling activation, and a Groth16 proof after Sapling activation);

new]

- C e Sym.CN isa sequence of ciphertext components for the encrypted output notes.

The ephemeralKey and encCiphertexts fields together form the transmitted notes ciphertext.
The value hg, is also computed from randomSeed, nfcl)l.éNoId, and the joinSplitPubKey of the containing transaction:
hsig := hSigCRH(randomSeed, nf‘i"‘.jNomjoinSplitPubKey).

Consensus rules:

- Elements of a JoinSplit description MUST have the types given above (for example: 0 < v25, < MAX_MONEY

pub =
and 0 < vpo < MAX_MONEY).

- The proof mzk joinspiit MUST be valid given a primary input formed from the relevant other fields and hg;, —i.e.
. . . Spr Id old new
ZKJoinSplit. Verify ((rt>P""* ,NFS o, MY e, Vo, Voo s Nsigs (o), TZK Joinsplit) = 1.

- Either vf,'fb or vpi, MUST be zero.

- [Canopy onward] v pub MUST be zero.

4.4 Spend Descriptions

A Spend transfer, as specified in §3.6 ‘Spend Transfers, Output Transfers, and their Descriptions’ on p.18, is
encoded in transactions as a Spend description.

Each transaction includes a sequence of zero or more Spend descriptions.

Each Spend description is authorized by a signature, called the spend authorization signature.

Let Ef,,afr'fjf and prenfsapiing e as defined in §5.3 ‘Constants’ on p.72.

Let Oy, absty, repry, and hjy be as defined in §5.4.9.3 ‘Jubjub’ on p.100.

Let ValueCommit>*"™.Output be as defined in §4.1.8 ‘Commitment’ on p.29.

Let SpendAuthSig®*”™ be as defined in §4.15 ‘Spend Authorization Signature (Sapling and Orchard)’ on p.55.
Let ZKSpend be as defined in §4.1.13 Zero-Knowledge Proving System’ on p. 33.
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Sapling

A Spend description comprises (cv, rt , nf, rk, TzKspend> SPendAuthSig) where

- v ¢ ValueCommit>*"8 Qutput is the value commitment to the value of the input note;

Sapling

. rt5Pe o Blhvenie] js an anchor, as defined in § 3.4 “Transactions and Treestates’ on p.17, for the output treestate
of a previous block;

- nf : BYlerrsaping/8] is the nullifier for the input note;
- rk : SpendAuthSig>**""€ Public is a randomized validating key that should be used to validate spendAuthSig;

- Tzkspend © ZKSpend.Proof is a zk-SNARK proof with primary input (cv, rt>**"™ nf, rk) for the Spend statement
defined in §4.18.2 ‘Spend Statement (Sapling)’ on p.59;

- spendAuthSig : SpendAuthSig>*"""€ Signature is a spend authorization signature, validated as specified in §4.15
‘Spend Authorization Signature (Sapling and Orchard)’ on p.55.

Consensus rules:
- Elements of a Spend description MUST be valid encodings of the types given above.
- cvand rk MUST NOT be of small order, i.e. [hj] cv MUST NOT be Oj and [hj] rk MUST NOT be O;.
- The proof m7kspend MUST be valid given a primary input formed from the other fields except spendAuthSig —
L.e. ZKSpend.Verify (cv, rt>2PIe N rk), TzKSpend) = 1.

- Let SigHash be the SIGHASH transaction hash of this transaction, not associated with an input, as defined in
§4.10 ‘SIGHASH Transaction Hashing’ on p.49 using SIGHASH_ALL.

The spend authorization signature MUST be a valid SpendAuthSig>*""™ signature over SigHash using rk as the
validating key— i.e. SpendAuthSig>*"""¢ Validate,, (SigHash, spendAuthSig) = 1.

[NU5 onward] As specified in §5.4.7 ‘RedDSA, RedJubjub, and RedPallas’ on p. 90, the validation of the R
component of the signature changes to prohibit non-canonical encodings.

Non-normative notes:

. As stated in §5.4.8.3 on p.95, an implementation of HomomorphicPedersenCommit>**""8 MAY resample the
commitment trapdoor until the resulting commitment is not O.

- The rule that cv and rk MUST not be small-order has the effect of also preventing non-canonical encodings
of these fields, as required by [ZIP-216]. That is, it is necessarily the case that repr;(abst;(cv)) = cv and
repry (absty(rk)) = rk.

4.5 Output Descriptions

An Output transfer, as specified in § 3.6 ‘Spend Transfers, Output Transfers, and their Descriptions’ on p.18, is
encoded in transactions as an Output description.

Each transaction includes a sequence of zero or more Output descriptions. There are no signatures associated
with Output descriptions.

Let (32PI"8 be as defined in §5.3 ‘Constants’ on p.72.

Let Oy, absty, repry, and hj be as defined in §5.4.9.3 ‘Jubjub’ on p.100.

Let ValueCommit>*™& Qutput be as defined in §4.1.8 ‘Commitment’ on p. 29.

Let KA®*P"€ he as defined in §4.1.5 ‘Key Agreement’ on p. 25.

Let Sym be as defined in §4.1.4 ‘Symmetric Encryption’ on p. 25.

Let ZKOutput be as defined in §4.1.13 Zero-Knowledge Proving System’ on p. 33.
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. . . t
An Output description comprises (cv, cm,,, epk, C*", C°**, w7k ouipue) Where

- v ¢ ValueCommit>*'""8 Qutput is the value commitment to the value of the output note;

SapHng]

- cm, ¢ Blfwewel s the result of applying Extract; e (defined in §5.4.9.4 ‘Coordinate Extractor for Jubjub’ on
p.102) to the note commitment for the output note;

- epk : KA®P'"8 pyplic is a key agreement public key, used to derive the key for encryption of the transmitted
note ciphertext (§4.20 ‘In-band secret distribution (Sapling and Orchard)’ on p. 65);

- C*" : Sym.C is a ciphertext component for the encrypted output note;

. C*" : Sym.C is a ciphertext component that allows the holder of the outgoing cipher key (which can be
derived from a full viewing key) to recover the recipient diversified transmission key pky and the ephemeral
private key esk, hence the entire note plaintext;

- Tzkoutput - ZKOutput.Proof is a zk-SNARK proof with primary input (cv, cm,,, epk) for the Output statement
defined in §4.18.3 ‘Output Statement (Sapling)’ on p.60.

Consensus rules:
- Elements of an Output description MUST be valid encodings of the types given above.
- cvand epk MUST NOT be of small order, i.e. [hj] cv MUST NOT be Oy and [hj] epk MUST NOT be O;.
- The proof mzkoutput MUST be valid given a primary input formed from the other fields except C*"° and C*** —
i.e. ZKOutput.Verify ((cv, cm,,, epk), Tzkoutput) = 1.
Non-normative notes:

- As stated in §5.4.8.3 on p. 95, an implementation of HomomorphicPedersenCommit>**""6 MAY resample the
commitment trapdoor until the resulting commitment is not Oj.

- The rule that cv and epk MUST not be small-order has the effect of also preventing non-canonical encodings
of these fields, as required by [ZIP-216]. That is, it is necessarily the case that repr;(abst;(cv)) = cv and
repry (abst;(epk)) = rk.

4.6 Action Descriptions

An Action transfer, as specified in §3.7 ‘Action Transfers and their Descriptions’ on p.19, is encoded in trans-
actions as an Action description. Each version 5 transaction includes a sequence of zero or more Action descriptions.
(Version 4 transactions cannot contain Action descriptions.)

Each Action description is authorized by a signature, called the spend authorization signature.
Let /¥ be as defined in §5.3 ‘Constants’ on p.72.

Let gp be as defined in §5.4.9.6 ‘Pallas and Vesta’ on p.103.
Let Extractp be as defined in §5.4.9.7 ‘Coordinate Extractor for Pallas’ on p.104.

Let ValueCommit®™"™. Qutput be as defined in §4.1.8 ‘Commitment’ on p. 29.

Let SpendAuthSig®™"™ be as defined in §4.15 ‘Spend Authorization Signature (Sapling and Orchard)’ on p.55.
Let KA°" be as defined in §4.1.5 ‘Key Agreement’ on p. 25.

Let Sym be as defined in §4.1.4 ‘Symmetric Encryption’ on p.25.

Let ZKAction be as defined in §4.1.13 Zero-Knowledge Proving System’ on p. 33.
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An Action description comprises (cv™", rtO"a nf, rk, spendAuthSig, cm,, epk, C°"°, C°**, enableSpends, enableOutputs,
) where

t .. Orchard
. ov"™* ¢ ValueCommit©Orehe

the output note;

- rt9 e £ gp — 1} is an anchor, as defined in § 3.4 “Transactions and Treestates’ on p.17, for the output

treestate of a previous block;

.Output is the value commitment to the value of the input note minus the value of

- nf : {0..qp — 1} is the nullifier for the input note;
- rk 2 SpendAuthSig®* "™ Public is a randomized validating key that should be used to validate spendAuthSig;

- spendAuthSig : SpendAuthSig®™"™ Signature is a spend authorization signature, validated as specified in §4.15
‘Spend Authorization Signature (Sapling and Orchard)’ on p.55;

- cm, : {0..gp — 1} is the result of applying Extractp to the note commitment for the output note;

- epk : KAP™" pyplic is a key agreement public key, used to derive the key for encryption of the transmitted
note ciphertext (§4.20 Tn-band secret distribution (Sapling and Orchard)’ on p. 65);

- C*"“: Sym.C is a ciphertext component for the encrypted output note;

. C°" : Sym.C is a ciphertext component that allows the holder of the outgoing cipher key (which can be
derived from a full viewing key) to recover the recipient diversified transmission key pkq and the ephemeral
private key esk, hence the entire note plaintext;

- enableSpends : B is a flag that is set in order to enable non-zero-valued spends in this Action;

- enableOutputs : B is a flag that is set in order to enable non-zero-valued outputs in this Action;

- m ¢ ZKAction.Proof is a zk-SNARK proof with primary input (cv, rtO""a nf rk, cm,,, enableSpends, enableOutputs)

for the Action statement defined in §4.18.4 ‘Action Statement (Orchard)’ on p.61.

Note: The rt® "™ enableSpends, and enableOutputs components are the same for all Action transfers in a trans-
action. They are encoded once in the transaction body (see § 71 ‘Transaction Encoding and Consensus’ on p.119),
not in the ActionDescription structure. 7is aggregated with other Action proofs and encoded in the proofsOrchard
field of a transaction.

Consensus rules:
- Elements of an Action description MUST be canonical encodings of the types given above.
- Let SigHash be the SIGHASH transaction hash of this transaction, not associated with an input, as defined in

§4.10 ‘SIGHASH Transaction Hashing’ on p.49 using SIGHASH_ALL.

The spend authorization signature MUST be a valid SpendAuthSig®™ "™ signature over SigHash using rk

as the validating key— i.e. SpendAuthSig®™ " Validate,, (SigHash, spendAuthSig) = 1. As specified in §5.4.7
‘RedDSA, RedJubjub, and RedPallas’ on p. 90, validation of the R component of the signature prohibits non-
canonical encodings.

- The proof # MUST be valid given a primary input (cv, rt9 " nf vk, cm,, enableSpends, enableOutputs) — i.e.

ZKAction. Verify (cv, rt9ha nf, rk, cm,, enableSpends, enableOutputs), 7) = 1.

Non-normative notes:
- cv and rk can be the zero point Op. epk cannot be Op.

- nf and cm,, are not checked to be valid affine-short-Weierstrass z-coordinates on the Pallas curve; they are
only checked to encode integers in {0..gp — 1}.

4.7 Sending Notes
471 Sending Notes (Sprout)

In order to send Sprout shielded value, the sender constructs a transaction containing one or more JoinSplit
descriptions.
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Let JoinSplitSig be as specified in §4.1.7 ‘Signature’ on p. 26.
Let NoteCommit>™"* be as specified in §4.1.8 ‘Commitment’ on p. 29.
Let £geeq and Ef’ppm”t be as specified in § 5.3 ‘Constants’ on p.72.

Sending a transaction containing JoinSplit descriptions involves first generating a new JoinSplitSig key pair:

joinSplitPrivKey < JoinSplitSig.GenPrivate()
joinSplitPubKey := JoinSplitSig.DerivePublic(joinSplitPrivKey).
For each JoinSplit description, the sender chooses randomSeed uniformly at random on Bl and selects the input

notes. At this point there is sufficient information to compute hs;,, as described in the previous section. The sender
also chooses ¢ uniformly at random on B> . Then it creates each output note with index i : {1.N""}:

. Choose uniformly random rcm; < NoteCommit>™°"".GenTrapdoor ().

- Compute p;, = PRF{, (i, hg;g).

- Compute cm; = NoteCommitfcpr::“t(apkmvi, ;).

- Let np; = (0x00, v;, p;, rcm;, memo;).
np,; e are then encrypted to the recipient transmission keys pkg, 1 n, giving the transmitted notes ciphertext
(epk, C{"yre), as described in §4.19 In-band secret distribution (Sprout)’ on p. 63.

In order to minimize information leakage, the sender SHOULD randomize the order of the input notes and of the
output notes. Other considerations relating to information leakage from the structure of transactions are beyond
the scope of this specification.

After generating all of the JoinSplit descriptions, the sender obtains dataToBeSigned : BYM as described in §4.11
‘Non-malleability (Sprout) on p.50, and signs it with the private JoinSplit signing key:

joinSplitSig & JoinSplitSig.Signjoinsp1itPrivkey (dataToBeSigned)
Then the encoded transaction including joinSplitSig is submitted to the peer-to-peer network.

[Canopy onward] Note: [ZIP-211] specifies that nodes and wallets MUST disable any facilities to send to Sprout
addresses. This SHOULD be made clear in user interfaces and API documentation.

The facility to send to Sprout addresses is in any case OPTIONAL for a particular node or wallet implementation.

4.7.2 Sending Notes (Sapling)

In order to send Sapling shielded value, the sender constructs a transaction with one or more Output descriptions.

52P"€ 5 nd NoteCommit>*""8 be as specified in §4.1.8 ‘Commitment’ on p. 29.

Let ValueCommit
Let KA®*P"€ he as specified in §4.1.5 ‘Key Agreement’ on p. 25.

Let DiversifyHash>*™""€ be as specified in §4.11 ‘Hash Functions’ on p.23.

Let ToScalar>®P"€ be as specified in §4.2.2 ‘Sapling Key Components’ on p. 35.

Let repry and 7y be as defined in §5.4.9.3 ‘Jubjub’ on p.100.
Let ovk be a Sapling outgoing viewing key that is intended to be able to decrypt this payment. This may be one of:
- the outgoing viewing key for the address (or one of the addresses) from which the payment was sent;

- the outgoing viewing key for all payments associated with an “account”, to be defined in [ZIP-32];

- 1, if the sender should not be able to decrypt the payment once it has deleted its own copy.
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Note: Choosing ovk = _L is useful if the sender prefers to obtain forward secrecy of the payment information with
respect to compromise of its own secrets.

Let CanopyActivationHeight be as defined in §5.3 ‘Constants’ on p.72.

Let leadByte be the note plaintext lead byte. This MUST be 0x01 if for the next block, height < CanopyActivationHeight,
or 0x02 if height > CanopyActivationHeight.

For each Output description, the sender selects a value v : {0.. MAX_MONEY} and a destination Sapling shielded
payment address (d, pky), and then performs the following steps:

Check that pky is of type KAS*™™ PyplicPrimeSubgroup, i.e. it MUST be a valid ctEdwards curve point on the
Jubjub curve (as defined in §5.4.9.3 “Jubjub’ on p.100), and [r;] pky = Oy.

Calculate g4 = DiversifyHash®*""¢(d) and check that gy # L.

Choose a uniformly random commitment trapdoor rcv < ValueCommit®>**""8 GenTrapdoor ().
If leadByte = 0x01:

Choose a uniformly random ephemeral private key esk < KAS*™™ Private \ {0}.

&
& NoteCommit.GenTrapdoor().

Choose a uniformly random commitment trapdoor rcm
Set rseed := [2LEOSP55(rcm).

else:
Choose uniformly random rseed < By,

Derive rcm = ToScaIarsap""g(PRFeXpa"d([4] ).

rseed

Derive esk = ToScalar>*™""8(PRFE2M([5])).

rseed
Letcv = VaIueCommitfca\,p""g(v).

Letcm = NoteCommitf’c”‘n‘:“"g(reprJ(gd)7 repry(pkq), v).

Let np = (leadByte, d, v, rseed, memo).
Encrypt np to the recipient diversified transmission key pky with diversified base gy, and to the outgoing

viewing key ovk, giving the transmitted note ciphertext (epk, C*"°, C°"*). This procedure is described in §4.20.1
‘Encryption (Sapling and Orchard)’ on p. 65; it also uses cv and cmu to derive ock, and takes esk as input.

Generate a proof mzkoutput for the Output statement in §4.18.3 ‘Output Statement (Sapling)’ on p. 60.

enc out
Return (cv, cm, epk, C*, C*™, 7k output ) -

In order to minimize information leakage, the sender SHOULD randomize the order of Output descriptions in a
transaction. Other considerations relating to information leakage from the structure of transactions are beyond the
scope of this specification. The encoded transaction is submitted to the peer-to-peer network.

4.7.3 Sending Notes (Orchard)

In order to send Orchard shielded value, the sender constructs a transaction with one or more Action descriptions.
This section describes how to produce the output-related fields of an Action description.

Orchard

Let ValueCommit and NoteCommit°" be as specified in §4.1.8 ‘Commitment’ on p. 29.

Let PRF®®" be as specified in §4.1.2 ‘Pseudo Random Functions’ on p. 24.

Let KA® " he as specified in §4.1.5 ‘Key Agreement’ on p. 25.

Let DiversifyHash®" " be as specified in §4.11 ‘Hash Functions’ on p.23.

Let ToScalar® " and ToBase®™ " be as specified in §4.2.3 ‘Orchard Key Components’ on p.37.
Let reprp, rp, and the Pallas curve be as defined in §5.4.9.6 ‘Pallas and Vesta’ on p.103.

Let Extracty be as defined in §5.4.9.7 ‘Coordinate Extractor for Pallas’ on p.104.

Let I2LEOSP be as defined in § 5.1 Tntegers, Bit Sequences, and Endianness’ on p.71.
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Let ovk be an Orchard outgoing viewing key that is intended to be able to decrypt this payment. The considerations
for choosing outgoing viewing keys are as described for Sapling in §4.7.2 ‘Sending Notes (Sapling)’ on p.43.

Let leadByte be the note plaintext lead byte, which MUST be 0x02.
For each Action description, the sender selects a value v : {0.. MAX_MONEY} and a destination Orchard shielded
payment address (d, pky), and performs the following steps:

Check that pky is of type KA®™™ puplic.

Calculate gy = DiversifyHash®™"(d).

Choose a uniformly random commitment trapdoor rcv < ValueCommit?™™. GenTrapdoor().

Choose uniformly random rseed & g2,

Let p = nf*"

Derive esk = ToScaIarorChard(PRFEXpa"d([4] [ p)).

rseed

from the same Action description, and let p = [2LEOSP54(p).

If esk = 0 (mod rp), repeat the above steps using a different rseed.

Derive rcm = ToScaIarorChard(PRFeXpa”d([5] Ilp)).

rseed

Derive ) = ToBaseorChard(PRFex"a"d([9} I p)).

rseed
Let cv™*" be the value commitment to the value of the input note minus the value v of the output note for this
Action transfer, using rcv, as described in §4.14 ‘Balance and Binding Signature (Orchard)’ on p.53.

Let cm, = Extractp (NoteCommitom = “(reprp(gq), reprp(pka), v, p, 1))

If cm, = L, repeat the above steps using a different rseed.
Let np = (leadByte, d, v, rseed, memo).

Encrypt np to the recipient diversified transmission key pky with diversified base gy, and to the outgoing
viewing key ovk, giving the transmitted note ciphertext (epk, C*"°, C°"*). This procedure is described in §4.20.1
‘Encryption (Sapling and Orchard)’ on p.65; it uses cv"™" and cm,, to derive ock, and takes esk as input.

Fill in the spending side of the Action transfer (§4.15 ‘Spend Authorization Signature (Sapling and Orchard)
on p.55), and generate a proof 7 for the Action statement in §4.18.4 ‘Action Statement (Orchard)’ on p.61.

Return (cv, cm,, epk, C*"°, C**, 7).

If no real Orchard note is being spent in the same Action transfer, the sender SHOULD create a dummy note
to spend as described in §4.8.3 ‘Dummy Notes (Orchard)’ on p.47, and use that dummy note’s nullifier as the p
value.

In order to minimize information leakage, the sender SHOULD randomize the order of Action descriptions in a
transaction. Other considerations relating to information leakage from the structure of transactions are beyond the
scope of this specification. The encoded transaction is submitted to the peer-to-peer network.

expand
rseed

Note: The domain separators [4] and [5] used in the input to PRF
This was due to an oversight and there is no good reason for it.

are swapped for Orchard relative to Sapling.

4.8 Dummy Notes
4.8.1 Dummy Notes (Sprout)

new

The fields in a JoinSplit description allow for N° input notes, and N"* output notes. In practice, we may wish to
encode a JoinSplit transfer with fewer input or output notes. This is achieved using dummy notes.

Let £, and (px?"" be as defined in § 5.3 ‘Constants’ on p.72.
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Let PRF"P! be as defined in §4.1.2 ‘Pseudo Random Functions’ on p.24.

Let NoteCommit>™*"* be as defined in §4.1.8 ‘Commitment’ on p.29.

A dummy Sprout input note, with index 7 in the JoinSplit description, is constructed as follows:
- Generate a new uniformly random spending key a:llffi & Bl and derive its paying key ag'k({i.
. Set v = 0.

Sprout

. Choose uniformly random p? & Bl*r | and rem®™ & NoteCommit>™". GenTrapdoor ().

. Compute nfo = PRFZESpmut(P?Id)-

sk,

- Let path; be a dummy Merkle path for the auxiliary input to the JoinSplit statement (this will not be checked).
- When generating the JoinSplit proof, set enforceMerklePath; to 0.

A dummy Sprout output note is constructed as normal but with zero value, and sent to a random shielded payment
address.

4.8.2 Dummy Notes (Sapling)

In Sapling there is no need to use dummy notes simply in order to fill otherwise unused inputs as in the case of a
JoinSplit description; nevertheless it may be useful for privacy to obscure the number of real shielded inputs from
Sapling notes.

Let £y be as defined in § 5.3 ‘Constants’ on p.72.

Let ValueCommit>**"8 and NoteCommit>*""8 be as defined in §4.1.8 ‘Commitment’ on p.29.

Let DiversifyHash>**""€ be as specified in §4.11 ‘Hash Functions’ on p.23.

Let ToScalar>®P"€ be as specified in §4.2.2 ‘Sapling Key Components’ on p. 35.
Let repry and 7y be as defined in §5.4.9.3 ‘Jubjub’ on p.100.

Let PRF"%P"8 he as defined in §4.1.2 ‘Pseudo Random Functions’ on p. 24.

Let NoteCommit>*"""€ be as defined in §4.1.8 ‘Commitment’ on p. 29.

A Spend description for a dummy Sapling input note is constructed as follows:
. Choose uniformly random sk <= B,

- Generate the ak and nk components of a full viewing key and a diversified payment address (d, pky) for sk, as
described in §4.2.2 ‘Sapling Key Components’ on p. 35.

- Letv =0and pos = 0.

. Choose uniformly random rev < ValueCommit>*"""€ GenTrapdoor().
. Choose uniformly random rseed < By,

- Derive rcm = ToScalar>*™""§(PRFZ®21 ([4])).

rseed
. Let cv = ValueCommit;2P"8(v).

- Let cm = NoteCommit>2?"&(repry(gy), repr;(pkg), v).

- Let px = reprJ(MixingPedersenHash(cm, pos)).

- Let nkx = repry(nk).

. Let nf = PRF">2Ping (5,0).

- Construct a dummy Merkle path path for use in the auxiliary input to the Spend statement (this will not be
checked, because v = 0).

As in Sprout, a dummy Sapling output note is constructed as normal but with zero value, and sent to a random
shielded payment address.
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4.8.3 Dummy Notes (Orchard)

As for Sapling, it may be useful for privacy to obscure the number of real shielded inputs from Orchard notes.

Let £y be as defined in §5.3 ‘Constants’ on p.72.

Let ValueCommit®" and NoteCommit®™"* be as defined in §4.1.8 ‘Commitment’ on p.29.

Let DiversifyHash®" " be as specified in § 4.1.1 ‘Hash Functions’ on p. 23.

Let ToScalar®""" and ToBase®" " be as specified in §4.2.3 ‘Orchard Key Components’ on p. 37.
Let reprp and 7p be as defined in §5.4.9.6 ‘Pallas and Vesta’ on p.103.

Let DeriveNullifier be as defined in §4.16 ‘Computing p values and Nullifiers’ on p. 56.

Let NoteCommit®™™ be as defined in §4.1.8 ‘Commitment’ on p. 29.

Let I2LEOSP be as defined in § 5.1 Integers, Bit Sequences, and Endianness’ on p.71.

The spend-related fields of an Action description for a dummy Orchard input note are constructed as follows:
. Choose uniformly random sk < Bl

- Generate a full viewing key (ak, nk, rivk) and a diversified payment address (d, pky) for sk as described in §4.2.3
‘Orchard Key Components’ on p. 37.

- Letv=0.

- Choose uniformly random rseed & prl2l,

. Choose uniformly random p* &p
- Letp = Extractp(pp) and p = [2LEOSPy54(p).

- Derive rcm = ToScalar”"(PRFE2M([5] || ).

rseed

. Derivell) _ ToBaseOrchard(PRFeXPand([9] HB))

rseed

. Letcm = NoteCommit%ﬁhard(reprp(gd), reprp(pkq), v, P, ).

- Ifcm = L, repeat the above steps using a different rseed.
- Let nf = DeriveNullifier,, (p, ¥, cm).

- Construct a dummy Merkle path path for use in the auxiliary input to the Action statement (this will not be
checked, because v = 0).

As in Sprout and Sapling, a dummy Orchard output note is constructed as normal but with zero value, and sent to
a random shielded payment address.

Fexpand

Note: The domain separators [4] and [5] used in the input to PRF ;-

This was due to an oversight and there is no good reason for it.

are swapped for Orchard relative to Sapling.

4.9 Merkle Path Validity

Let MerkleDepth be MerkleDepth>™°"* for the Sprout note commitment tree, or MerkleDepth®>*"'" for the Sapling note

commitment tree, or MerkIeDepthorChard for the Orchard note commitment tree. These constants are defined in
§5.3 ‘Constants’ on p.72.

Similarly, let MerkleCRH be MerkleCRH®>""* for Sprout, or MerkleCRH>*"'"€ for Sapling, or MerkleCRH" " for Or-
chard.

The following discussion applies independently to the Sprout and Sapling and Orchard note commitment trees.

Each node in the incremental Merkle tree is associated with a hash value, which is a bit sequence.
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The layer numbered h, counting from layer 0 at the root, has 2" nodes with indices 0 to 2" — 1 inclusive.
Let M be the hash value associated with the node at index i in layer h.

The nodes at layer MerkleDepth are called leaf nodes. When a note commitment is added to the tree, it occupies
the leaf node hash value MY"*™'*°**™" for the next available .

As-yet unused leaf nodes are associated with a distinguished hash value Uncommitted>™*"* or Uncommitted>*"""& or
Uncommitted?" " It is assumed to be infeasible to find a preimage note n such that NoteCommitment>™°"{(
Uncommitted>™", (No similar assumption is needed for Sapling or Orchard because we use a representation for
Uncommitted®"™ that cannot occur as an output of NoteCommitment>**"8 and similarly for Orchard.)

n) =

The nodes at layers 0 to MerkleDepth — 1 inclusive are called internal nodes, and are associated with MerkleCRH
outputs. Internal nodes are computed from their children in the next layer as follows: for 0 < h < MerkleDepth and
0<i<2"

M} := MerkleCRH(h, MBF*, M311).

A Merkle path from leaf node MY"*™*P**" in the incremental Merkle tree is the sequence

[ M';ib“ng(hﬂ-) for h from MerkleDepth down to 1],

where

sibling(h, i) := roor<W> a1

MerkleDepth
Miereept

Given such a Merkle path, it is possible to verify that leaf node is in a tree with a given root rt = MJ.

Notes:

. For Sapling, Merkle hash values are specified to be encoded as bit sequences, but the root rt>*P'" is encoded

for the primary input of a Spend proof as an element of I, , as specified in § A4 “The Sapling Spend circuit’

on p. 210. The Spend circuit allows inputs to MerkleCRH>*P""€ at each node to be non-canonically encoded, as
specified in § A.3.4 ‘Merkle path check’ on p.206.

- For Orchard, Merkle hash values have type {0 .. g — 1} as defined in § 5.4.9.7 ‘Coordinate Extractor for Pallas’

on p.104. Similarly to Sapling, the Action circuit allows inputs to MerkleCRH®" " at each node to be non-
canonically encoded.

- The Action circuit is permitted to be implemented in such a way that the Merkle path validity check can
pass if any hash value on the path, including the root, is 0. This can only happen if SinsemillaHash returned
1 for that hash, because 0 is not the affine-short-Weierstrass x-coordinate of any point on the Pallas curve
(as shown in a note at § 5.4.9.7 ‘Coordinate Extractor for Pallas’ on p.104), and SinsemillaHashToPoint cannot
return Op. Allowing the validity check to pass in that case models the fact that incomplete addition is used
to implement Sinsemilla in the circuit. As proven in Theorem 5.4.4 on p. 82, a L output from SinsemillaHash
yields a nontrivial discrete logarithm relation. Since we assume finding such a relation to be infeasible, we
can argue that it is safe to allow an adversary to create a proof that passes the Merkle validity check in such a
case.
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4.10 SIGHASH Transaction Hashing

Bitcoin and Zcash use signatures and/or non-interactive proofs associated with transaction inputs to authorize
spending. Because these signatures or proofs could otherwise be replayed in a different transaction, it is necessary
to “bind” them to the transaction for which they are intended. This is done by hashing information about the
transaction and (where applicable) the specific input, to give a SIGHASH transaction hash which is then used for
the Spend authorization. The means of authorization differs between transparent inputs, inputs to Sprout JoinSplit
transfers, and Sapling Spend transfers or Orchard Action transfers, but for a given transaction version the same
SIGHASH transaction hash algorithm is used.

In the case of Zcash, the BCTV14 and Groth16 and Halo 2 proving systems used are malleable, meaning that there is
the potential for an adversary who does not know all of the auxiliary inputs to a proof, to malleate it in order to create
a new proof involving related auxiliary inputs [DSDCOPS2001]. This can be understood as similar to a malleability
attack on an encryption scheme, in which an adversary can malleate a ciphertext in order to create an encryption of
a related plaintext, without knowing the original plaintext. Zcash has been designed to mitigate malleability attacks,
as described in §4.11 ‘Non-malleability (Sprout)’ on p.50, §4.13 ‘Balance and Binding Signature (Sapling)’ on
p.51, and §4.15 ‘Spend Authorization Signature (Sapling and Orchard)’ on p.55.

To provide additional flexibility when combining spend authorizations from different sources, Bitcoin defines sev-
eral SIGHASH types that cover various parts of a transaction [Bitcoin-SigHash]. One of these types is SIGHASH_ALL,
which is used for Zcash-specific signatures, i.e. JoinSplit signatures, spend authorization signatures, Sapling binding
signatures, and Orchard binding signatures. In these cases the SIGHASH transaction hash is not associated with a
transparent input, and so the input to hashing excludes all of the scriptSig fields in the non-Zcash-specific parts
of the transaction.

In Zcash, all SIGHASH types are extended to cover the Zcash-specific fields nJoinSplit, vJoinSplit, and if present
joinSplitPubKey. These fields are described in § 7.1 Transaction Encoding and Consensus’ on p.119. The hash
does not cover the field joinSplitSig. After Overwinter activation, all SIGHASH types are also extended to cover
transaction fields introduced in that upgrade, and similarly after Sapling activation and after NU5 activation.

The original SIGHASH algorithm defined by Bitcoin suffered from some deficiencies as described in [ZIP-143]; in
Zcash these were addressed by changing this algorithm as part of the Overwinter upgrade.

Orchard and the NU5 network upgrade introduce transaction version 5, which MUST be used if any Action transfers
are present. This version also provides nonmalleable transaction identifiers, and MAY be used for that reason
whether or not Action transfers are present.

Consensus rules:

- [NU5 onward] Any SIGHASH type encoding used in a version 5 transaction MUST be the canonical encoding
of one of the defined SIGHASH types, i.e. one of 0x01, 0x02, 0x03, 0x81, 0x82, or 0x83. (Previously, undefined
bits of a SIGHASH type encoding were ignored.)

- [Pre-Overwinter] The SIGHASH algorithm used prior to Overwinter activation, i.e. for version 1 and 2
transactions, will be defined in [ZIP-76] (to be written).

- [Overwinter only, pre-Sapling] The SIGHASH algorithm used after Overwinter activation and before Sapling
activation, i.e. for version 3 transactions, is defined in [ZIP-143].

- [Overwinter only, pre-Sapling] All transactions MUST use the Overwinter consensus branch ID 0x5BA81B19
as defined in [ZIP-201].

- [Sapling onward] The SIGHASH algorithm used after Sapling activation, i.e. for version 4 transactions, is
defined in [ZIP-243].

- [Sapling only, pre-Blossom] All transactions MUST use the Sapling consensus branch ID 0x76B809BB as
defined in [ZIP-205].

- [Blossom only, pre-Heartwood] All transactions MUST use the Blossom consensus branch ID 0x2BB40E60 as
defined in [ZIP-206].

- [Heartwood only, pre-Canopyl] All transactions MUST use the Heartwood consensus branch ID 0xF5B9230B
as defined in [ZIP-250].

49


https://zips.z.cash/protocol/nu5.pdf#sighash

- [Canopy only, pre-NUS5] All transactions MUST use the Canopy consensus branch ID 0xE9FF75A6 as defined
in [ZIP-251].

- [NUS5 onward] The SIGHASH algorithm used for version 5 transactions introduced by the NU5 network
upgrade is defined in [ZIP-244]. Version 4 transactions continue to use the SIGHASH algorithm defined in
[Z1P-243].

- [NUS5 only] All transactions MUST use the NU5 consensus branch ID 0xF919A198 as defined in [ZIP-252].

4.11 Non-malleability (Sprout)

Let dataToBeSigned be the hash of the transaction, not associated with an input, using the SIGHASH_ALL SIGHASH
type.

In order to ensure that a JoinSplit description is cryptographically bound to the transparent inputs and outputs
corresponding to vy, and vg'fb, and to the other JoinSplit descriptions in the same transaction, an ephemeral
JoinSplitSig key pair is generated for each transaction, and the dataToBeSigned is signed with the private signing key

of this key pair. The corresponding public validating key is included in the transaction encoding as joinSplitPubKey.
JoinSplitSig is instantiated in §5.4.6 ‘Ed25519 on p. 88.

If nJoinSplit is zero, the joinSplitPubKey and joinSplitSig fields are omitted. Otherwise, a transaction has a
correct JoinSplit signature if and only if JoinSplitSig.Validate;oinsp1itPubkey (dataToBeSigned, joinSplitSig) = 1.

Let hg;, be computed as specified in §4.3 “JoinSplit Descriptions’ on p.38.

Let PRF? be as defined in §4.1.2 ‘Pseudo Random Functions’ on p. 24.

old

For each i € {1..N°“}, the creator of a JoinSplit description calculates h; = PRF;’Sd (4, hsig)-

sk,
The correctness of h, s is enforced by the JoinSplit statement given in §4.18.1 ‘JoinSplit Statement (Sprout)’ on

p- 58. This ensures that a holder of all of the aidluNoud for every JoinSplit description in the transaction has authorized

the use of the private signing key corresponding to joinSplitPubKey to sign this transaction.

4.12 Balance (Sprout)

In Bitcoin, all inputs to and outputs from a transaction are transparent. The total value of transparent outputs must
not exceed the total value of transparent inputs. The net value of transparent inputs minus transparent outputs is
transferred to the miner of the block containing the transaction; it is added to the miner subsidy in the coinbase
transaction of the block.

Zcash Sprout extends this by adding JoinSplit transfers. Each JoinSplit transfer can be seen, from the perspective of
the transparent transaction value pool, as an input and an output simultaneously.

vgludb takes value from the transparent transaction value pool and vy, adds value to the transparent transaction

old new

value pool. As aresult, v, is treated like an output value, whereas vy, is treated like an input value.

Unlike original Zerocash [BCGGMTV2014], Zcash does not have a distinction between Mint and Pour operations.
The addition of vg'ﬂ, to a JoinSplit description subsumes the functionality of both Mint and Pour.

Also, a difference in the number of real input notes does not by itself cause two JoinSplit descriptions to be
distinguishable.

new

As stated in §4.3 ‘JoinSplit Descriptions’ on p. 38, either v;'fb or vy, MUST be zero. No generality is lost because,

if a transaction in which both vg'udb and vy, were nonzero were allowed, it could be replaced by an equivalent

one in which min(vg'fb, Vpub ) is subtracted from both of these values. This restriction helps to avoid unnecessary

distinctions between transactions according to client implementation.
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4.13 Balance and Binding Signature (Sapling)

Sapling adds Spend transfers and Output transfers to the transparent and JoinSplit transfers present in Sprout.
The net value of Spend transfers minus Output transfers in a transaction is called the Sapling balancing value,
measured in zatoshi as a signed integer y"22"<®>2Pling.

VbalanceSapIing balanceSapling

is encoded in a transaction as the field valueBalanceSapling. For a v4 transaction, v is always
explicitly encoded. For a v5 transaction, v***"“*>*P'"& js implicitly zero if the transaction has no Spend descriptions
or Output descriptions. Transaction fields are described in § 7.1 Transaction Encoding and Consensus’ on p.119.

Apositive Sapling balancing value takes value from the Sapling transaction value pool and adds it to the transparent
transaction value pool. A negative Sapling balancing value does the reverse. As a result, positive y*2"52Plin jg

treated like an input to the transparent transaction value pool, whereas negative v"2"*5P"8 js treated like an
output from that pool.

Consistency of vP2"“®5%P€ with the value commitments in Spend descriptions and Output descriptions is enforced

by the Sapling binding signature. This signature has a dual réle in the Sapling protocol:
- To prove that the total value spent by Spend transfers, minus that produced by Output transfers, is consistent
with the vP22"<®5%Ple fe|d of the transaction;
- To prove that the signer knew the randomness used for the Spend and Output value commitments, in order

to prevent Output descriptions from being replayed by an adversary in a different transaction. (A Spend
description already cannot be replayed due to its spend authorization signature.)

Instead of generating a key pair at random, we generate it as a function of the value commitments in the Spend
descriptions and Output descriptions of the transaction, and the Sapling balancing value.

Let J*, J%* and r; be as defined in §5.4.9.3 Jubjub’ on p. 100.

§5.4.8.3 ‘Homomorphic Pedersen commitments (Sapling and Orchard)’ on p.95 instantiates:
ry—1 ry—1
5

ValueCommit>*""™8 : ValueCommit>*"™€ Trapdoor x {-
VSapIing . J(7)*

b= ValueCommit>"™"& Output;

, the value base in ValueCommit>2P'"e.

R5PINg . 1% the randomness base in ValueCommit>*"8,

BindingSig>*"""¢ &, and M are instantiated in §5.4.7.2 ‘Binding Signature (Sapling and Orchard)’ on p.93.

§4.1.7.2 ‘Signature with Signing Key to Validating Key Monomorphism’ on p. 29 specifies these operations and
N

N
the derived notation &, @ , B, and EB , which in this section are to be interpreted as operating on the
=1 =1

(3

prime-order subgroup of points on the Jubjub curve and on its scalar field.

Suppose that the transaction has:

old
1.n

Id

ne

.. . . Id L .
- n Spend descriptions with value commitments cv{",,, committing to values v{°,, with randomness rcv{

- m Output descriptions with value commitments cvi®},, committing to values v{%,, with randomness rcv|),;

. Sapling balancing value v°2"eeS2pline,

: balanceSapli " old m
In a correctly constructed transaction, y>2"<®>?lne — %~ old %"

Vi , lv;ew, but validators cannot check this directly
i= Jj=

because the values are hidden by the commitments.

Instead, validators calculate the transaction binding validating key as:

n m
kaSapIing — <$ CV?Id> e ($ CV;GW> e ValuecommitgapIing(VbaIanceSapIing).

i=1 j=1

(This key is not encoded explicitly in the transaction and must be recalculated.)
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. Id o
The signer knows revi,, and revi®,, and so can calculate the corresponding signing key as:

bsk>2P'ine . — (Hﬂ rcv§|d> B (Hﬂ rcv';»eW).

i=1 j=1
In order to check for implementation faults, the signer SHOULD also check that
bvk>*®""8 — BindingSig>*"""€. DerivePublic(bsk>*"").

Let SigHash be the SIGHASH transaction hash as defined in [ZIP-243] for a version 4 transaction or [Z1P-244] for a
version 5 transaction, not associated with an input, using the SIGHASH type SIGHASH_ALL.

A validator checks balance by validating that BindingSigsap"”g.Validatebvks;pnng (SigHash,bindingSigSapling) = 1.

We now explain why this works.

A Sapling binding signature proves knowledge of the discrete logarithm bsk>*P'" of bvk®>*P'"8 with respect to R>*P"e,
That is, bvk®®™ = [bsk>*P""&] R>2P"8 S5 the value 0 and randomness bsk®*™™™ is an opening of the Pedersen
commitment bvk>*™"¢ — VaIueCommltsapsl'a';ﬁg(O). By the binding property of the Pedersen commitment, it is

infeasible to find another opening of thls commitment to a different value.

Similarly, the binding property of the value commitments in the Spend descriptions and Output descriptions
ensures that an adversary cannot find an opening to more than one value for any of those commitments, i.e. we
may assume that v, are determined by cv$',, and that v]®", are determined by cv}
Knowledge Soundness of Groth16, that the Spend proofs could not have been generated without knowing rcv{
(mod rj), and the Output proofs could not have been generated without knowing revi®), (mod ry).

.. We may also assume, from

old
1..n

Using the fact that ValueCommit;2?"™8(v) = [v] V>*P'"8 & [rcv] R>*P'"8 the expression for bvk®*™™ above is equivalent
to:

kaSapIing _ [(Hﬂ V;)Id) = (Hﬂ V;ew) = VbalanceSapIing] VSapIing $ [(Hﬂ rcv;)ld) = (Hﬂ rcv;ew) ] RSapIing

i=1 j=1 i=1 j=1

i=1 j=1

n m
Sapling old new balanceSapling
= VaIueCommlt  Sapine ( E v, — E Vi =V .

m

Let V _ ZVOld o Z new VbalanceSapImg.

j=1

Suppose that v = v* £ 0 (mod ;). Then bvk>*'"& — VaIueCommltsapS!'aZﬁg( ®2d)_If the adversary were able to find

the discrete logarithm of this bvk>*P'""8 with respect to R>*™" say bsk’ (as needed to create a valid Sapling binding

signature), then (v"™, bsk®>**""€) and (0, bsk’) would be distinct openings of bvk>*"™ to different values, breaking
the binding property of the value commitment scheme.

The above argument shows only that v = 0 (mod r;); in order to show that v* = 0, we will also demonstrate that it
TJ 1 ry—1 }
.=

does not overflow {—

The Spend statements (§4.18.2 ‘Spend Statement (Sapling)’ on p.59) prove that all of v¥" arein {0.. vatue_ 1}. Sim-
ilarly the Output statements (§ 4.18.3 ‘Output Statement (Sapling)’ on p.60) prove all of vi%, are in {0 2 fuatve 1}
yPalanceSapling i3 o coded in the transaction as a signed two's complement 64-bit mteger in the range {—2% -1}
{yave is defined as 64, so v* is in the range {—m - (2°* —1) = 2% + 1. n- (2% — 1) 4+ 2%%}. The maximum transact1on
size is 2 MB, and the minimum contributions of a Spend description and an Output description to transaction size
are (in a v5 transaction) 352 bytes and 948 bytes respectively, limiting n to at most floor (2%920%%) = 5681 and m to at

352
most floor (22395%%) = 2109.

This ensures that v* € {—38913406623490299131842 .. 104805176454780817500623}, a subrange of { — 21 . HL1.
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Thus checking the Sapling binding signature ensures that the Spend transfers and Output transfers in the transaction
balance, without their individual values being revealed.

In addition this proves that the signer, knowing the Hﬂ-sum of the Sapling value commitment randomnesses,
authorized a transaction with the given SIGHASH transaction hash by signing SigHash.

Note: The spender MAY reveal any strict subset of the Sapling value commitment randomnesses to other parties
that are cooperating to create the transaction. If all of the value commitment randomnesses are revealed, that
could allow replaying the Output descriptions of the transaction.

Non-normative note:  The technique of checking signatures using a validating key derived from a sum of Pedersen
commitments is also used in the Mimblewimble protocol [Jedusor2016]. The private key bsk>*P"" acts as a “synthetic
blinding factor’, in the sense that it is synthesized from the other blinding factors (trapdoors) rev$, and revi®,;

this technique is also used in Bulletproofs [Dalek-notes].

4.14 Balance and Binding Signature (Orchard)

Orchard introduces Action transfers, each of which can optionally perform a spend, and optionally perform an

output. Similarly to Sapling, the net value of Orchard spends minus outputs in a transaction is called the Orchard

, . . . . balanceOrchard
balancing value, measured in zatoshi as a signed integer v°2 2" e,

ybatanceOrehard i oy coded in a transaction as the field valueBalanceOrchard. If a transaction has no Action descriptions,
bal hard . . 1. . 0 . .
ybataneeOrehard 3o 3 licitly zero. Transaction fields are described in § 7.1 “Transaction Encoding and Consensus’ on

p-119.

Apositive Orchard balancing value takes value from the Orchard transaction value pool and adds it to the transparent

. : . .o+ balanceOrchard -
transaction value pool. A negative Orchard balancing value does the reverse. As a result, positive v>2 "<~ " jg

treated like an input to the transparent transaction value pool, whereas negative v"2"%*" s treated like an

output from that pool.

Consistency of v?2"€0hard yith the value commitments in Action descriptions is enforced by the Orchard binding

signature. The réle of this signature in the Orchard protocol is to prove that the net value spent (i.e. the total value
spent minus the total value produced) by Action transfers is consistent with the v*2"<9""d fie]d of the transaction.

Non-normative note: The other réle of Sapling binding signatures, to prove that the signer knew the randomness
used for commitments in order to prevent them from being replayed, is less important in Orchard because all
Action descriptions have a spend authorization signature. Still, an Orchard binding signature does prove that the
signer knew this commitment randomness; this provides defence in depth and reduces the differences of Orchard
from Sapling, which may simplify security analysis.

Instead of generating a key pair at random, we generate it as a function of the value commitments in the Action
descriptions of the transaction, and the Orchard balancing value.

Let P, P*, and rp be as defined in §5.4.9.6 ‘Pallas and Vesta’ on p.103.
§5.4.8.3 ‘Homomorphic Pedersen commitments (Sapling and Orchard)’ on p. 95 instantiates:

ValueCommit®™ "™ : ValueCommit®™ " Trapdoor x {2 .. =11 — ValueCommit® " Output;

3
YOrehard . p* the value base in ValueCommit°rehar.

h . .. Orch
ROrehard - p* the randomness base in ValueCommit®r"a.

BindingSig®" " &, and M are instantiated in §5.4.7.2 ‘Binding Signature (Sapling and Orchard) on p.93.

§4.1.7.2 ‘Signature with Signing Key to Validating Key Monomorphism’ on p. 29 specifies these operations and
N N

the derived notation &, @ ,B.and EB , which in this section are to be interpreted as operating on the Pallas
i=1 i=1

curve and its scalar field.
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Suppose that the transaction has:
- n Action descriptions with value commitments cv},, committing to values v{*,, with randomness rcv},,;

. | h
. Orchard balancing value P20 hard,

1

net
V.
=1

balanceOrchard _ Z <, but validators cannot check this directly because

In a correctly constructed transaction, v
the values are hidden by the commitments.

Instead, validators calculate the transaction binding validating key as:

n

h . h | h
kaOrc ard — ($ CV;et) e ValuecommltOOrc ard(vba anceOrc ard).

i=1

(This key is not encoded explicitly in the transaction and must be recalculated.)

The signer knows rcv]®,, and so can calculate the corresponding signing key as:

n
hard t
bskOrehard . HH rev; <.
=1

In order to check for implementation faults, the signer SHOULD also check that

bvk?"™ = BindingSig® "' . DerivePublic(bsk°™"").

A transaction containing Action descriptions is necessarily a version 5 transaction. Let SigHash be the SIGHASH
transaction hash for a version 5 transaction as defined in [ZIP-244] as modified by [ZIP-225], not associated with an
input, using the SIGHASH type SIGHASH_ALL.

A validator checks balance by validating that BindingSigOYChard.Validatebvkomrd (SigHash, bindingSigOrchard) = 1.

The security argument is very similar to that for Sapling binding signatures, but for completeness we spell it out,
since there are minor differences due to the net value commitments, and a different bound on the net value sum v*.

An Orchard binding signature proves knowledge of the discrete logarithm bsk®" " of bvk®™*™ with respect to
RO That is, bvk®™™ = [bsk®""¥] RO<hard 55 the value 0 and randomness bsk®* "™ is an opening of the
Pedersen commitment bvk®™ "¢ = ValueCommitgsfgiﬂfyd (0). By the binding property of the Pedersen commitment,
it is infeasible to find another opening of this commitment to a different value.

Similarly, the binding property of the value commitments in the Action descriptions ensures that an adversary
cannot find an opening to more than one value for any of those commitments, i.e. we may assume that vi*, are
determined by cv]®,. We may also assume, from Knowledge Soundness of Halo 2, that the Action proofs could not

have been generated without knowing revi®,, (mod 7p).

Using the fact ValueCommit " (v) = [v] V""" & [rcv] RO™M™ the expression for bvk®™™ above is equivalent

to:
n
<HH V2et> =] VbalanceOrchard

i=1

n

VOrchard $ [HH rCvzet‘| ROrchard

i=1

kaOrchard _

i=1

n
o .. Orchard net balanceOrchard
= ValueCommit, | orchars <Z v v )

n
Let V* _ Zv?et o VbalanceOrchard.
i=1

Suppose that v = v** £ 0 (mod ;). Then bvk®" = VaIueCommitbOsziEfrd (v*2%). If the adversary were able to find
the discrete logarithm of this bvk®* "™ with respect to R%" "™ say bsk’ (as needed to create a valid Orchard binding

signature), then (v*** bsk®"™) and (0, bsk’) would be distinct openings of bvk®"*™ to different values, breaking
the binding property of the value commitment scheme.
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The above argument shows only that v: = 0 (mod 7); in order to show that v* = 0, we will also demonstrate that it

o1 el
does not overflow {—"t— .. ==1.

The Action statements (§4.18.4 ‘Action Statement (Orchard)’ on p. 61) prove thatall v, arein {—2%* +1..2% — 1},
yPatanceOrehard s oy coded in the transaction as a signed two's complement 64-bit integer in the range {—2% .. 2% — 1}.

Therefore, v* is in the range {—n - (2°* — 1) — 2% 4+ 1 ..n - (2% — 1) + 2%} n is limited by consensus rule to at most
2'% _ 1 (this rule is technically redundant due to the 2 MB transaction size limit, but it suffices here).

This ensures that v € {—1208916596242592319864832 .. 1208916596242592319864833}, a subrange of { — 2% . 211

Thus checking the Orchard binding signature ensures that the Action transfers in the transaction balance, without
their individual net values being revealed.

In addition this proves that the signer, knowing the EH—sum of the Orchard value commitment randomnesses,
authorized a transaction with the given SIGHASH transaction hash by signing SigHash.

Note: The spender MAY reveal any strict subset of the Orchard value commitment randomnesses to other parties
that are cooperating to create the transaction.

4.15 Spend Authorization Signature (Sapling and Orchard)

SpendAuthSig is used in Sapling and Orchard to prove knowledge of the spending key authorizing spending of an
input note. It is instantiated in § 5.4.7.1 ‘Spend Authorization Signature (Sapling and Orchard)’ on p.93.

We use SpendAuthSig>®P"€ to refer to the spend authorization signature scheme for Sapling, which is instantiated
on the Jubjub curve. We use SpendAuthSig®" " to refer to the spend authorization signature scheme for Orchard,
which is instantiated on the Pallas curve. The following discussion applies to both.

Knowledge of the spending key could have been proven directly in the Spend statement or Action statement,
similar to the check in §4.18.1 ‘JoinSplit Statement (Sprout)’ on p.58 that is part of the JoinSplit statement. The
motivation for a separate signature is to allow devices that are limited in memory and computational capacity, such
as hardware wallets, to authorize a Sapling or Orchard shielded Spend. Typically such devices cannot create, and
may not be able to verify, zk-SNARK proofs for a statement of the size needed using the BCTV14, Groth16, or Halo 2
proving systems.

The validating key of the signature must be revealed in the Spend description so that the signature can be checked
by validators. To ensure that the validating key cannot be linked to the shielded payment address or spending key
from which the note was spent, we use a signature scheme with re-randomizable keys. The Spend statement or
Action statement proves that this validating key is a re-randomization of the spend authorization address key ak
with a randomizer known to the signer. The spend authorization signature is over the SIGHASH transaction hash,
so that it cannot be replayed in other transactions.

Let SigHash be the SIGHASH transaction hash as defined in [ZIP-243] or as defined in [ZIP-244] modified by [ZIP-225],
not associated with an input, using the SIGHASH type SIGHASH_ALL.

Let ask be the spend authorization private key as defined in §4.2.2 ‘Sapling Key Components’ on p.35 or in §4.2.3
‘Orchard Key Components’ on p. 37.

Let SpendAuthSig be SpendAuthSig>*™™™ or SpendAuthSig®™ " as applicable.
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For each Spend description or Action description, the signer chooses a fresh spend authorization randomizer «:

1. Choose a <& SpendAuthSig.GenRandom().

2. Let rsk = SpendAuthSig.RandomizePrivate(a, ask).
3. Let rk = SpendAuthSig.DerivePublic(rsk).
4

. Generate a proof wof the Spend statement (§4.18.2 ‘Spend Statement (Sapling)’ on p.59) or Action statement
(§4.18.4 ‘Action Statement (Orchard)’ on p.61), with « in the auxiliary input and rk in the primary input.

5. Let spendAuthSig = SpendAuthSig.Sign,, (SigHash).

The resulting spendAuthSig and 7 are included in the Spend description, or in the vSpendAuthSigsSapling or
vSpendAuthSigsOrchard field of a version 5 transaction.

Note: If the spender is computationally or memory-limited, step 4 (and only step 4) MAY be delegated to a
different party that is capable of performing the zk-SNARK proof. In this case privacy will be lost to that party
since it needs ak and the proof authorizing key nsk; this allows also deriving the nk component of the full viewing
key. (In Orchard, that party needs the nk directly to make the zk-SNARK proof ) Together ak and nk are sufficient
to recognize spent notes and to recognize and decrypt incoming notes. However, the other party will not obtain
spending authority for other transactions, since it is not able to create a spend authorization signature by itself.

4.16 Computing p values and Nullifiers

In Sprout and Orchard, each note has a p component, defined as part of the note.

In Sapling, each positioned note (as defined in §3.2.2 ‘Note Commitments’ on p.15) has an associated p value,
which is computed from its note commitment cm and note position pos as follows:

p := MixingPedersenHash(cm, pos).

MixingPedersenHash is defined in §5.4.1.8 ‘Mixing Pedersen Hash Function’ on p.79.

Let PRF"°PUt and PRF"P18 4 d PRE"O™" be as instantiated in §5.4.2 ‘Pseudo Random Functions’ on p. 84.
For a Sprout note, the nullifier (see § 3.2.3 ‘Nullifiers’ on p.16) is derived as PRF::kSpm”t(p), where ag is the spending
key associated with the note.

nfSapling

For a Sapling note, the nullifier is derived as PRF °"""%(p«), where nk« is a representation of the nullifier deriving
key associated with the note and px = repr;(p).

The derivation of nullifiers for Orchard notes is a little more complicated.

Let P and ¢p be as defined in §5.4.9.6 ‘Pallas and Vesta’ on p.103.

Let Extractp be as defined in §5.4.9.7 ‘Coordinate Extractor for Pallas’ on p.104.

Let GroupHash" be as defined in §5.4.9.8 ‘Group Hash into Pallas and Vesta’ on p.105.

Define £°" .= GroupHash” (“z. cash:0rchard”, “K”).

To avoid repetition, we define a function DeriveNullifier : I,  x F,_ x F, x P — [, as follows:

DeriveNullifier,, (p, P, cm) = Extractp ( [(PRFEfkorChard(p) +1p) mod gp| jcOrehard cm).

where nk is the nullifier deriving key associated with the note; p and 1 are part of the note; and cm is the note
commitment.

Note: The addition of PRF1"" (p) and 1 is intentionally done modulo ¢, even though the scalar multiplication
is on the Pallas curve which has scalar field F,.
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Security requirement: For each shielded protocol, the requirements on nullifier derivation are as follows:

- The derived nullifier must be determined completely by the fields of the note, and possibly its position, in a
way that can be checked in the corresponding statement that controls spends (i.e. the JoinSplit statement,
Spend statement, or Action statement).

- Under the assumption that p values are unique, it must not be possible to generate two notes with distinct note
commitments but the same nullifier. (See § 8.4 ‘Faerie Gold attack and fix’ on p.139 for further discussion.)

- Given a set of nullifiers of a priori unknown notes, they must not be linkable to those notes with probability
greater than expected by chance, even to an adversary with the corresponding incoming viewing keys (but
not full viewing keys), and even if the adversary may have created the notes.

4.17 Chain Value Pool Balances

The transparent chain value pool balance for a given block chain is the sum of the values of all UTXOs in the UTXO
(unspent transaction output) set for that chain. It is denoted by ChainValuePoolBalance ™" (height).

As defined in [ZIP-209], the Sprout chain value pool balance for a given block chain is the sum of all v2, field

pub
values for transactions in the block chain, minus the sum of all vy field values for transactions in the block chain.

It is denoted by ChainValuePoolBalance®™ " (height).

Consensus rule: If the Sprout chain value pool balance would become negative in the block chain created as a
result of accepting a block, then all nodes MUST reject the block as invalid.

As defined in [ZIP-209], the Sapling chain value pool balance for a given block chain is the negation of the sum of all
valueBalanceSapling values for transactions in the block chain. It is denoted by ChainValuePoolBalance>*"™" (height).

Consensus rule: If the Sapling chain value pool balance would become negative in the block chain created as a
result of accepting a block, then all nodes MUST reject the block as invalid.

Similarly to the Sapling chain value pool balance defined in [ZIP-209], the Orchard chain value pool balance for a
given block chain is the negation of the sum of all valueBalanceOrchard field values for transactions in the block
chain. It is denoted by ChainValuePoolBalance®™ "™ (height).

Consensus rule: If the Orchard chain value pool balance would become negative in the block chain created as a
result of accepting a block, then all nodes MUST reject the block as invalid.

The total issued supply of a block chain at block height height is given by the function:

IssuedSupply(height) := ChainValuePoolBalance """ (height)
+ ChainValuePoolBalance®™" (height)
+ ChainValuePoolBalance®™™ (height)
+ ChainValuePoolBalance® ™ (height)
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418 Zk-SNARK Statements
4.18.1 JoinSplit Statement (Sprout)

Let fopost, €522, MerkleDepth®™®", e, £a . €57, hsig, N, N™* be as defined in §5.3 ‘Constants’ on p.72.
Let PRF*", PRF"P* PRFPX and PRF® be as defined in §4.1.2 ‘Pseudo Random Functions’ on p.24.

Let NoteCommit>™*"* be as defined in §4.1.8 ‘Commitment’ on p.29, and let Note®™°"*
as defined in § 3.2 ‘Notes’ on p.13.

Avalid instance of a JoinSplit statement, Tz joinspiit @ssures that given a primary input:

and NoteCommitment>™°"* be

Sprout
(rtSPmUt . B[m”ﬁk])
Sprout; yold
old . 4 N
nfluNold . B[ pre 1 ],

cm®¥ e : NoteCommit™ P Qutput™ /|

Voub ¢ {0 201},

Ve 2 {0, 2081},
th ° E[thig]
h, oot BUR TN,

the prover knows an auxiliary input:

Sprout Sprout; old
-l MerkleDepth N
(pathluNo‘d ° B[ Merkle] [MerkleDep il ]7

- {0.. 2Merk|eDepth5'"°“‘_ 1) [N

pos old 5

1..N

old . Sprout[N°|d]
n, (e s Note . ,
old o s 1IN
ask’l“Nold o Bes s

new o
n; e : Note

[ZSProut]

@:Be
enforceMerkIePathl_vNom - N

where:

Sprout[N""]
)

old]

)

foreachi € {1..N°'d}: n?'d = (agt{i, vfld, p?'d, rcm?'d);
for eachi € {1.N""}: ni®™ = (apgi, Vi, o remi <)
such that the following conditions hold:

Merkle path validity for each i € {1..N°?} | enforceMerklePath; = 1: (path;, pos;) is a valid Merkle path (see §4.9

‘Merkle Path Validity' on p.47) of depth MerkleDepth>™"* from NoteCommitment>™®*{(n$') to the anchor rt>™°"",
Note: Merkle path validity covers conditions 1. (a) and 1.(d) of the NP statement in [BCGGMTV2014, section 4.2].

Merkle path enforcement for each i € {1..N®}, if v{" £ 0 then enforceMerklePath, = 1.

No‘ Nnew
old old __  new new Coatu
Balance vy, + Zi:lvi =iy + 21:1 Ve € {0.. 201},

Nullifier integrity  for each i € {1..N°}: nfo¢ = PRFZﬁ.Sdpm“t(p?'d).

sk,

Spend authority  for each i € {1.N%}: a9, = PRF:E‘&“(O).

sk,

Non-malleability ~ for each i € {1.N®%}: h, = PRF%

old
Ask, i

(iv hSig)'

Uniqueness of p;**  for each i € {1.N""}: pi*" = PRF{, (i, hg;g).

new new

}: em?® = NoteCommitment>P"(

neW)
i .

Note commitment integrity for each: € {1.N n

For details of the form and encoding of proofs, see §5.4.10.1 ‘BCTV14’ on p.108.

58


https://zips.z.cash/protocol/nu5.pdf#snarkstatements
https://zips.z.cash/protocol/nu5.pdf#joinsplitstatement

4.18.2 Spend Statement (Sapling)

Let £p2PW"8 (pprntsapting: Loomir®, and MerkleDepth>™" be as defined in §5.3 ‘Constants’ on p.72.

Sapling

Let ValueCommit and NoteCommit>*"8 be as specified in §4.1.8 ‘Commitment’ on p.29.

Let SpendAuthSig®**""€ be as defined in § 5.4.7.1 ‘Spend Authorization Signature (Sapling and Orchard)’ on p.93.
LetJ, J©, repry, ¢y, 73, and hy be as defined in §5.4.9.3 ‘Jubjub’ on p.100.

Sapling

Let Extract o : J® — Blene] pe as defined in §5.4.9.4 ‘Coordinate Extractor for Jubjub’ on p.102.
Let H>*P'"€ be as defined in §4.2.2 ‘Sapling Key Components’ on p. 35.

Avalid instance of a Spend statement, Tzkspend, @ssures that given a primary input:
(rtSapling . B[ﬁfﬂf]’
ov® ¢ ValueCommit>*'""€. Output,
Id LpREnfsapling /8
nfo o BY[ PRFnfSapl g/ ]7

rk SpendAuthSigsap”"g.Public),
the prover knows an auxiliary input:
(path : Blim] MerkeDepth™™]
MerkleDepth®®"™

pos : {0..2 1},
gd ¢ Ja
pkd : Ja
Vo9 {0, 20eme—1},
Saplin,
rev® 2 {0 2éscaﬁ3'g—1},
ch,Iold ZJ,
Saplin
rem®® 2 {0.. 2Z5€ap'afg—1},

Sapling

a: {0.. 25 —1},
ak : SpendAuthSig>*"""8 Public,

KSapHng
nsk 2 {0.. 2%k —1})
such that the following conditions hold:

Sapling

P repr (gg). repr; (k). V).

Note commitment integrity cm®® = NoteCommit
rc

Merkle path validity ~ Either v®® = 0; or (path, pos) is a valid Merkle path of depth MgrkIeDepthsap""g, as defined in
§$4.9 ‘Merkle Path Validity’ on p.47, from cm, = Extract ) (ecm®?) to the anchor rt>*P"e,

Sapling(vold)

Value commitment integrity ov® = ValueCommit i
rcv

Small order checks g4 and ak are not of small order, i.e. [hy] g4 # Oy and [hy] ak # Oj.

Nullifier integrity  nf®" = PRF"f2Pling () where
nkx = repry ([nsk] ’Hsapl'"g)
px = reprJ(I\/IixingPedersenHash(cm°|d, pos)).

Spend authority rk = SpendAuthSig>**""€ RandomizePublic(c, ak).

Diversified address integrity  pky = [ivk] gg where
ivk = CRHY (akx, nkx)
akx = repry(ak).

For details of the form and encoding of Spend statement proofs, see §5.4.10.2 ‘Groth16’ on p.109.
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Notes:

- Primary and auxiliary inputs MUST be constrained to have the types specified. In particular, see § A.3.3.2
‘ctEdwards [deJcompression and validation’ on p.198, for required validity checks on compressed repre-

sentations of Jubjub curve points.
The ValueCommit>**""8 Output and SpendAuthSig>*"""€ Public types also represent points, i.e. J.

- In the Merkle path validity check, each layer does not check that its input bit sequence is a canonical encoding

(in {0.. gy — 1}) of the integer from the previous layer.

- Itis not checked in the Spend statement that rk is not of small order. However, this is checked outside the

Spend statement, as specified in §4.4 ‘Spend Descriptions’ on p. 39.
- Itis not checked that rev®® < 7y or that rem®? < ry.
- SpendAuthSig>*"""& RandomizePublic(av, ak) = ak + [a] G>*P'"E
(G>*P'"e i5 as defined in §5.4.7.1 ‘Spend Authorization Signature (Sapling and Orchard)’ on p.93)

4.18.3 Output Statement (Sapling)

Let (2P and ¢22PI"8 e as defined in §5.3 ‘Constants’ on p.72.

Let ValueCommit>**"8 and NoteCommit>**""8 be as specified in §4.1.8 ‘Commitment’ on p. 29.

Let J, repry, and hj be as defined in §5.4.9.3 “Jubjub’ on p.100.

Sapling

Let Extract ¢ : J® — Blwene) pe as defined in §5.4.9.4 ‘Coordinate Extractor for Jubjub’ on p.102.

Avalid instance of an Output statement, Tzkoutput. @ssures that given a primary input:

(V™ ¢ ValueCommit>*"" Output,
[ZSapIing]
Cmu c ]B Merkle ,

epk : J )
the prover knows an auxiliary input:

(gd : J7
pk*d . B[ZJ]7
V' 2 {0, 201},

ESapling
rev™® ¢ {0.. 2%l — 1},

Sapling

rem"™ 2 {0.. 2%t — 11
ZSapling
esk ¢ {0.. 2%k —1})

such that the following conditions hold:

. . . .. Sapli
Note commitment integrity ~cm, = Extract;e) (NoteCommltrcaanJ‘Wg(g*d, pkxg, V™)), where gx4 = repr;(gq).

Value commitment integrity cv"®" = VaIueCommitf:V'iESg(v"eW).
Small order check g is not of small order, i.e. [hj] gq # Oj.
Ephemeral public key integrity epk = [esk] gq.

For details of the form and encoding of Output statement proofs, see §5.4.10.2 ‘Groth16’ on p.109.
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Notes:
- Primary and auxiliary inputs MUST be constrained to have the types specified. In particular, see §A.3.3.2
‘ctEdwards [deJcompression and validation’ on p.198, for required validity checks on compressed repre-
sentations of Jubjub curve points. The ValueCommit>**""8 Qutput type also represents points, i.e. Jl.

- The validity of pkxq is not checked in this circuit (which is the reason why it is typed as a bit sequence rather
than as a point).

- Itis not checked that rev®® < r; or that rem®® < 7}

4.18.4 Action Statement (Orchard)

Let (orchard pOrchard and MerkleDepth®™ " be as defined in §5.3 ‘Constants’ on p.72.

Orehard and Commit™ be as specified in §4.1.8 ‘Commitment’ on p. 29.
Let SpendAuthSig® " be as defined in § 5.4.7.1 ‘Spend Authorization Signature (Sapling and Orchard)’ on p.93.
Let P, P*, reprp, ¢p, and rp be as defined in §5.4.9.6 ‘Pallas and Vesta’ on p.103.

Let X, Y, Extractp, and Extractp be as defined in §5.4.9.7 ‘Coordinate Extractor for Pallas’ on p.104.

Let ValueCommit°™" NoteCommit

Let DeriveNullifier be as defined in §4.16 ‘Computing p values and Nullifiers’ on p.56.

Avalid instance of an Action statement, m, assures that given a primary input:

(rtorChard :{0..qp — 1},

o™ ¢ ValueCommit®" . Output,
nfo': {0 gp — 1},

rk ¢ SpendAuthSig® " Public,
cmy, 2 {0..qp — 1},

enableSpends : B,

enableOutputs : B),

the prover knows an auxiliary input:

(path . {O ap — 1}[MerkIeDepthorChard]
. MerkleDepth "™
pos:{0..2 -

g P,

pk3< : P*,

Vo9 {0 2heme 1],
pold N IF

° Tap)

.q)old N F

‘o Orchard
rchar
rem® : {0.. 25 1},

old ,
cm ,
Orchard

oz {0.. 20 —1},
ak’ : P*

nk s, ,

rivk : Commit*. Trapdoor,

new *
gd P )
pka < P,

V' 2 {0, 201},
.q)neW : ]:FqP7
new eOrchard
rem™ " o {0.. 27l —11

Orchard

rev s {0.. 25 —1})

)

such that the following conditions hold:
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Old note commitment integrity NoteCommit i (reprp(g5), reprp (pkS'™), v, o, 1) € {em® 1},

old
rcm

Merkle path validity  Either v® = 0; or (path, pos) is a valid Merkle path of depth MerkleDepth®"™ as defined in
§4.9 ‘Merkle Path Validity on p.47, from cm® to the anchor rt®"™.

Orchard(vold - VneW).

Value commitment integrity cv"*" = ValueCommit, o

Nullifier integrity  nf®? = DeriveNullifier, (p°, ¢, cm®?).

Spend authority rk = SpendAuthSig®™ " RandomizePublic(a, ak").

Diversified address integrity ivk = L or pk3® = [ivk] g5 where ivk = Commit}1, (Extractp(akp), nk).

Orchard

New note commitment integrity Extractﬁ(NoteCommitrcmnew (reprp(gg™), reprp(pkg ), v™®", ", ")) € {em,, L},

where p"" = nf®? (mod gp).

(o]

Enable spend flag  v®¢ = 0 or enableSpends = 1.

Enable output flag  v™" = 0 or enableOutputs = 1.

For details of the form and encoding of Action statement proofs, see §5.4.10.3 ‘Halo 2’ on p.110.

Notes:
- The primary inputs are encoded as the following sequence of type F,_ (91,

[t (mod gp), T (cv™), Y (cv™), nf (mod gp), Z(rk), Y(rk),cm, (mod gp), enableSpends (mod gp),
enableOutputs (mod gp) |.

(Recall from §2 ‘Notation’ on p.9 that “(mod ¢p)” interprets an integer as an If,, element.)

. Primary and auxiliary inputs MUST be constrained to have the types specified. In particular, g5, pk3<, g5

pki®, and ak” cannot be @p. The ValueCommit®* " Output and SpendAuthSig® ™ Public types represent
Pallas curve points, i.e. P.

. The scalar multiplication used in ValueCommit®*" must operate correctly on the range {—2%* + 1..2%* — 1},

which is different to the range {—2%% .. 26% — 1} of yPaanceOrehard

- In the Merkle path validity check, each layer does not check that its input bit sequence is a canonical encoding
(in {0..gp — 1}) of the integer from the previous layer.

- Asspecified in §4.9 ‘Merkle Path Validity’ on p.47, the validity check is permitted to be implemented in such

a way that it can pass if any MerkleCRH®""*" hash on the Merkle path outputs 0. This allows nondeterministic,
incomplete addition to be used in the circuit for SinsemillaHash.

. Itis not checked that rev < rp or that rem®® < 7 or that rem™” < rp.

. SpendAuthSigorChard.RandomizePuinc(a, ak’) = ak” + [o] GOrehard

(GO s as defined in § 5.4.7.1 ‘Spend Authorization Signature (Sapling and Orchard) on p.93)

- The validity of gxg and pksxy are not checked in this circuit. Also, rto "

affine-short-Weierstrass x-coordinates or 0.

and cm,, are not checked to be Pallas

- When a value given as a field element in the Action circuit is used as a scalar for scalar multiplication, it
involves witnessing the scalar as a sequence of bits or window indices, typically for a total of 255 bits (except
in the case of multiplying by the value difference v*'® — v"*¥). This raises the possibility that the witnessed
255-bit representation may match the original field element modulo gp, but not modulo rp. Unless it can be
proven to result in an equivalent statement, the decomposition of each scalar value MUST be canonical.

The cases in which not checking canonicity results in an equivalent statement are those where the state-
ment only requires to prove knowledge of the scalar, without using it elsewhere — i.e. the multiplica-
tions by rem® or rem™” in NoteCommit?™™™ by rev in ValueCommit®™™™ by rivk in Commit™*, and by a in
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SpendAuthSig®"* RandomizePublic. In particular, the representation of (PRFHC"" () 1) mod ¢p that is

used for the scalar multiplication in DeriveNullifier MUST be checked to be canonical in order to avoid a

potential double-spend vulnerability, and similarly for the representation of ivk in [ivk] g3°.

Non-normative notes:

- The procedure in §4.2.3 ‘Orchard Key Components’ on p.37 will always produce a spend authorization
address key that effectively has the compressed y-coordinate, g, set to 0. The Action statement, on the other
hand, allows the prover to witness ak" with § set to 0 or 1. This is harmless because if the prover and signer(s)
of the spend authorization signature collectively know rsk and «, we can conclude that they collectively know
ask up to sign, which is sufficient for spend authorization.

- There is intentionally no equivalent to the Ephemeral public key integrity check from the Sapling Output
statement. It is unnecessary for the sender of an Orchard note to prove knowledge of esk, because the
potential attack this originally addressed for Sapling is prevented by checks added at Canopy activation in
[ZIP-212]. These checks are required after the end of the ZIP 212 grace period, which precedes NUS5 activation.

Orchard

- If NoteCommit returns L for the old or new note, then the corresponding note commitment integrity
check is satisfied. Similarly, if Commit* returns L, then the diversified address integrity check is satisfied. This
models the fact that the implemented circuit uses incomplete point addition to compute SinsemillaHashToPoint.
If an exceptional case were to occur, the prover could arbitrarily choose the intermediate A value in an addition,
which must be assumed to allow them to control the output. (The formal output of SinsemillaHashToPoint
is L in such a case, while the output computed by the circuit would be nondeterministic.) But as proven
in Theorem 5.4.4 on p. 82, these exceptional cases allow immediately finding a nontrivial discrete logarithm
relation. If the Discrete Logarithm Problem is hard on the Pallas curve, then finding such a case is infeasible.

419 In-band secret distribution (Sprout)

In Sprout, the secrets that need to be transmitted to a recipient of funds in order for them to later spend, are v, p,
and rem. A memo field (§ 3.2.1 ‘Note Plaintexts and Memo Fields’ on p.14) is also transmitted.

To transmit these secrets securely to a recipient without requiring an out-of-band communication channel, the
transmission key pk,. is used to encrypt them. The recipient’s possession of the associated incoming viewing key
ivk is used to reconstruct the original note and memo field.

new

A single ephemeral public key is shared between encryptions of the N"*" shielded outputs in a JoinSplit description.
All of the resulting ciphertexts are combined to form a transmitted notes ciphertext.

For both encryption and decryption,
- let Sym be the scheme instantiated in § 5.4.3 ‘Symmetric Encryption’ on p. 86;

- let KDF*P™"* e the Key Derivation Function instantiated in § 5.4.5.2 ‘Sprout Key Derivation’ on p.87;

- let KA®P™"* be the key agreement scheme instantiated in §5.4.5.1 ‘Sprout Key Agreement’ on p. 86;
- let hg;, be the value computed for this JoinSplit description in §4.3 ‘JoinSplit Descriptions’ on p. 38.

4.19.1 Encryption (Sprout)

Let KA be the key agreement scheme instantiated in § 5.4.5.1 ‘Sprout Key Agreement’ on p. 86.
Let pkeyc 1 N be the transmission keys for the intended recipient addresses of each new note.

Let np, ym be Sprout note plaintexts defined in § 3.2.1 ‘Note Plaintexts and Memo Fields’ on p.14.
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Then to encrypt:
. Generate a new KA*™®"* (public, private) key pair (epk, esk).
- Fori e {1.N""},
- Let P;" be the raw encoding of np,.
Let sharedSecret; = KASP™"t Agree(esk, PKenc.q)-
Let K& = KDF>PU(j, hsig, sharedSecret;, epk, pkenc ; )-
Let Ci™ = Sym.Encryptycen (P5™).

The resulting transmitted notes ciphertext is (epk, C{" nev).

Note: It is technically possible to replace C;" for a given note with a random (and undecryptable) dummy
ciphertext, relying instead on out-of-band transmission of the note to the recipient. In this case the ephemeral key
MUST still be generated as a random public key (rather than a random bit sequence) to ensure indistinguishability
from other JoinSplit descriptions. This mode of operation raises further security considerations, for example of
how to validate a Sprout note received out-of-band, which are not addressed in this document.

4.19.2 Decryption (Sprout)

Let ivk = (apk, Skenc) be the recipient’s incoming viewing key, and let pke, be the corresponding transmission key
derived from sk, as specified in §4.2.1 ‘Sprout Key Components’ on p. 35.

Let cm; yrev be the note commitments of each output coin.

Then for each i € {1..N"®"}, the recipient will attempt to decrypt that ciphertext component (epk, C;") as follows:

let sharedSecret; = KA®P®"" Agree(skenc, epk)
let KE" = KDF>PUt(4, hsig, sharedSecret;, epk, pkenc)
return DecryptNoteSprout (K™, C5", cm;, ay).

DecryptNoteSprout (K;", C5™, cm;, a) is defined as follows:
let P§™ = Sym.Decrypt,er (C5™)
if P§" = 1, return L .
prout

extract np; = (leadByte; : BY,v; : {0..2%w=—1} p, Bl= | rem; : NoteCommit
from P;"™

SProUt Trapdoor, memo; ]BY[512])
letn; = (apka Vis Piy chi)
if leadByte; # 0x00 or NoteCommitment>™""(n;) # cm,, return L

return (n;, memo;).

Notes:

- The decryption algorithm corresponds to step 3 (b) i. and ii. (first bullet point) of the Receive algorithm shown
in [BCGGMTV2014, Figure 2.

- To test whether a note is unspent in a particular block chain also requires the spending key a,,; the coin is
unspent if and only if nf = PRF;:kSpm“t(p) is not in the nullifier set for that block chain.

- A note can change from being unspent to spent as a node’s view of the best valid block chain is extended by

new transactions. Also, block chain reorganizations can cause a node to switch to a different best valid block
chain that does not contain the transaction in which a note was output.

See §8.7 In-band secret distribution’ on p.143 for further discussion of the security and engineering rationale
behind this encryption scheme.
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4.20 In-band secret distribution (Sapling and Orchard)

In Sapling and Orchard, the secrets that need to be transmitted to a recipient of a note so that they can later spend
it, are d, v, and rcm or rseed. A memo field (§ 3.2.1 ‘Note Plaintexts and Memo Fields’ on p.14) is also transmitted.

To transmit these secrets securely to a recipient without requiring an out-of-band communication channel, the
diversified transmission key pky is used to encrypt them. The recipient’s possession of the associated KAS*Pi"€ or
KA private key ivk is used to reconstruct the original note and memo field.

Unlike in Sprout, each Sapling or Orchard shielded output is encrypted by a fresh ephemeral public key.

For both encryption and decryption,
- let 4, be as defined in § 5.3 ‘Constants’ on p.72;
- let Sym be the encryption scheme instantiated in § 5.4.3 ‘Symmetric Encryption’ on p. 86;

- let KA be the key agreement scheme KA or KA®""* instantiated in §5.4.5.3 ‘Sapling Key Agreement’
on p.87 or §5.4.5.5 ‘Orchard Key Agreement’ on p. 88;

- let KDF be the Key Derivation Function KDF>*P"€ or KDF 2" instantiated in § 5.4.5.4 ‘Sapling Key Derivation’
on p.87 or §5.4.5.6 ‘Orchard Key Derivation’ on p.88;

- let G, (g, and reprg be instantiated as J, £, and repr; defined in §5.4.9.3 Jubjub’ on p.100, or P, £, and reprp
defined in §5.4.9.6 ‘Pallas and Vesta’ on p.103;

- et Extract o be ExtractJ(m as defined in §5.4.9.4 ‘Coordinate Extractor for Jubjub’ on p.102 or Extractp as
defined in §5.4.9.7 ‘Coordinate Extractor for Pallas’ on p.104;

- let PRF°™ be PRF°%32Pn8 o pRECKOTehard jnstantiated in §5.4.2 ‘Pseudo Random Functions’ on p. 84;

- let DiversifyHash be DiversifyHash>**™ in § 5.4.1.6 ‘DiversifyHash>*""& and DiversifyHash®" "™ Hash Functions’
on p. 76, or DiversifyHash® " in the same section;

. let NoteCommitment be NoteCommitment>*™& or NoteCommitment®" " defined in § 3.2.2 ‘Note Commitments’
on p.15;

- let ToScalar be ToScalar>**"€ defined in §4.2.2 ‘Sapling Key Components’ on p. 35 or ToScalar”"™ defined
in §4.2.3 ‘Orchard Key Components’ on p.37;

- LEBS20SP, LEOS2IP, I2LEBSP, and I2LEOSP are defined in § 5.1 ‘Integers, Bit Sequences, and Endianness’
onp.7L

4.20.1 Encryption (Sapling and Orchard)

Let pkq : KA.PublicPrimeSubgroup be the diversified transmission key for the intended recipient address of a new
Sapling or Orchard note, and let g4 : KA.PublicPrimeSubgroup be the corresponding diversified base computed as
DiversifyHash(d).

Since Sapling note encryption is used only in the context of §4.7.2 ‘Sending Notes (Sapling)’ on p.43, and similarly
Orchard note encryption is used only in the context of §4.7.3 ‘Sending Notes (Orchard)’ on p.44, we may assume
that g4 has already been calculated and is not L. Also, the ephemeral private key esk has been chosen.

Let ovk : BYlfew/8] {L} be as described in §4.7.2 on p.43 or §4.7.3 on p. 44, i.e. the outgoing viewing key of the
shielded payment address from which the note is being spent, or an outgoing viewing key associated with a [ZIP-32]
account, or L.

Let np = (leadByte, d, v, rseed, memo) be the Sapling or Orchard note plaintext. np is encoded as defined in §5.5
‘Encodings of Note Plaintexts and Memo Fields’ on p.110.

Let cv be the value commitment for the Output description or Action description (for Orchard, this also depends
on the value of the note being spent), and let cm be the note commitment. These are needed to derive the outgoing
out

cipher key ock in order to produce the outgoing ciphertext C°*.
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Then to encrypt:

let P*"° be the raw encoding of np

let epk = KA.DerivePublic(esk, gg)

let ephemeralKey = LEBS20SP,_ (repr (epk))

let sharedSecret = KA.Agree(esk, pkyq)

let K" = KDF(sharedSecret, ephemeralKey)

let C*"“ = Sym.Encryptenc (P€")

ifovk = L:

choose random ock < Sym.K and op & py[(fc+256)/8]

else:

let cv = LEBS20SP, (reprg (cv))

let cms = LEBS20SP ;54 (Extract ) (cm))

let ock = PRFSK (cv, cm¥, ephemeralKey)
letop = LEBS2OSP@G+256(reprG(pkd) || 12LEBSP 56 (esk))

let C°'* = Sym.Encrypt,, (op)

The resulting transmitted note ciphertext is (ephemeralKey, C*"°, C°"").

Note: It is technically possible to replace C*'* for a given note with a random (and undecryptable) dummy
ciphertext, relying instead on out-of-band transmission of the note to the recipient. In this case the ephemeral key
MUST still be generated as a random public key (rather than a random bit sequence) to ensure indistinguishability
from other Output descriptions. This mode of operation raises further security considerations, for example of how
to validate a Sapling or Orchard note received out-of-band, which are not addressed in this document.

4.20.2 Decryption using an Incoming Viewing Key (Sapling and Orchard)
Letivk : {0.. ot 1} (in Sapling) or {1 .. gz — 1} (in Orchard) be the recipient’s KA>*P""& or KA®""™" private key, as
specified in §4.2.2 ‘Sapling Key Components’ on p.35 orin §4.2.3 ‘Orchard Key Components’ on p. 37.

Let (ephemeralKey, C*"°, C°"*) be the transmitted note ciphertext from the Output description. Let cm* be the cmu
or cox field of the Output description or Action description respectively. (This encodes the affine-ctEdwards
u-coordinate or affine-short-Weierstrass z-coordinate of the note commitment, i.e. Extract ) (cm).)

Let the constants CanopyActivationHeight and ZIP212GracePeriod be as defined in § 5.3 ‘Constants’ on p.72.
Let height be the block height of the block containing this transaction.
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enc

The recipient will attempt to decrypt the ephemeralKey and C*™ components of the transmitted note ciphertext:
let epk = abstg (ephemeralKey). if epk = L, return L

let sharedSecret = KA.Agree(ivk, epk)

let K" = KDF(sharedSecret, ephemeralKey)

let P*" = Sym.Decryptyerc (C*™). if P*"* = L, return L

extract np = (leadByte : BY, d : By {0.. 251} rseed : BY*? memo : ]B%Y[E’lz]) from P

[Pre-Canopy] if leadByte # 0x01, return L

[Pre-Canopy] let rem = rseed

[Canopy onward] if height < CanopyActivationHeight + ZIP212GracePeriod and leadByte ¢ {0x01, 0x02}, return L
[Canopy onward] if height > CanopyActivationHeight + ZIP212GracePeriod and leadByte # 0x02, return L
[Canopy onward] for Sapling, let pre_rcm = [4] and pre_esk = [5]

for Orchard, let p = I2LEOSP256(nf°Id from the same Action description), pre_rcm = [5] || p, and pre_esk = [4] || p

rseed, if leadByte = 0x01

ToScalar(PRFE®2 (pre_rcm)), otherwise

[Canopy onward] let rem = {

let rem = LEOS2IP,54 (rem) and gy = DiversifyHash(d). if rem > r¢ or (for Sapling) g4 = L, return L
[Canopy onward] if leadByte # 0x01:
esk = ToScalar(PRFE®2 (pre_esk))

rseed

if repri; (KA.DerivePublic(esk, g4)) # ephemeralKey, return L

let pky = KA.DerivePublic(ivk, gq)
for Sapling, let n = (d, pkg, v, rcm)
for Orchard, let n = (d, pkg, v, p, ¥, rcm) where { = ToBase®™ " (PRFE®2([9] || p))

rseed

let cm] = NoteCommitment(n). if (for Orchard) cm/ = 1, return

if I2LEOSPy5¢ (ExtractG(r) (cm))) # cm#, return L
return (n, memo).

Notes:
- g4 has already been computed when applying NoteCommitment, and need not be computed again.

- For Sapling, as explained in the note in §5.4.9.3 ‘Jubjub’ on p. 100, abst; accepts non-canonical compressed
encodings of Jubjub curve points. Therefore, an implementation MUST use the original ephemeralKey field
as encoded in the transaction as input to KDF>*™"8 and (if Canopy is active and leadByte # 0x01) in the
comparison against reprg (KA.DerivePublic(esk, g4)). For consistency this is also what is specified for Orchard.

- Normally only transmitted note ciphertexts of transactions in blocks need to be decrypted. In that case,
any received Sapling note is necessarily a positioned note, so its p value can immediately be calculated per
§4.16 ‘Computing p values and Nullifiers’ on p.56. To test whether a Sapling or Orchard note is unspent
in a particular block chain also requires the nullifier deriving key nk; the coin is unspent if and only if the
nullifier computed as in §4.16 on p. 56 is not in the nullifier set for that block chain.

- A note can change from being unspent to spent as a node’s view of the best valid block chain is extended by
new transactions. Also, block chain reorganizations can cause a node to switch to a different best valid block
chain that does not contain the transaction in which a note was output.

- Aclient MAY attempt to decrypt a transmitted note ciphertext of a transaction in the mempool, using the
next block height for height. However, in that case it MUST NOT assume that the transaction will be mined
and MUST treat the decrypted information as provisional, and private.

- [NU5 onward] It is a consensus rule (in § 4.6 ‘Action Descriptions’ on p.41) that each Action description field

MUST be a valid encoding of its declared type, which in the case of ephemeralKey is KA°™"" Public (i.e. P*),

and therefore epk cannot be Op.

- [NU5 onward] The domain separators [4] and [5] used in the input to PRFf:eZZ"d are swapped for Orchard

relative to Sapling. This was due to an oversight and there is no good reason for it.
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4.20.3 Decryption using a Full Viewing Key (Sapling and Orchard)

Let ovk : BY!+/8) be the outgoing viewing key, as specified in §4.2.2 ‘Sapling Key Components’ on p.35 or §4.2.3
‘Orchard Key Components’ on p.37, that is to be used for decryption. (If ovk = | was used for encryption, the
payment is not decryptable by this method.)

Let the constants CanopyActivationHeight and ZIP212GracePeriod be as defined in § 5.3 ‘Constants’ on p.72.
Let height be the block height of the block containing this transaction.

Let (ephemeralKey, C*"°, C°"*) be the transmitted note ciphertext.

For a Sapling transmitted note ciphertext, let cv and cmx be the cv and cmu fields of the Output description.

For an Orchard transmitted note ciphertext, let cv and cm* be the cv and cmx fields of the Action description.

The outgoing viewing key holder will attempt to decrypt the transmitted note ciphertext as follows:

let ock = PRF2K (cv, cm*, ephemeralKey)

let op = Sym.Decrypt, (C*") . if op = L, return L

extract (pkxq : Bl esk : IEBY[32]) from op

let esk = LEOS2IPs54 (esk) and pky = abstg (pkog)

if esk > rg or pky = L, return L

[NU5 onward] if reprp(pky) # pkxq, return L

let sharedSecret = KA.Agree(esk, pky)

let K" = KDF(sharedSecret, ephemeralKey)

let P*" = Sym.Decryptyerc (C*™). if P*"* = L, return L

extract np = (leadByte : BY,d : B! v : {0.. 2% 1}, rseed : BY®? memo : BY*'?)) from P*"

[Pre-Canopy] if leadByte # 0x01, return L

[Pre-Canopy] let rcm = rseed

[Canopy onward] if height < CanopyActivationHeight + ZIP212GracePeriod and leadByte ¢ {0x01, 0x02}, return L
[Canopy onward] if height > CanopyActivationHeight + ZIP212GracePeriod and leadByte # 0x02, return L
[Canopy onward] for Sapling, let pre_rcm = [4] and pre_esk = [5]

for Orchard, let p = I2LEOSP256(nf°Id from the same Action description), pre_rcm = [5] || p, and pre_esk = [4] || p

[Canopy onward] if leadByte # 0x01 and ToScalar(PRFZ® (pre_esk)) # esk, return L

rseed
rseed, if leadByte = 0x01

ToScalar(PRFEP2 (pre_rcm)), otherwise

[Canopy onward] let rem = {

let rem = LEOS2IP,54 (rem) and gy = DiversifyHash(d)

if rem > r¢ or (for Sapling) gy = L or pky € J ™* (see note below), return L

for Sapling, let n = (d, pkyq, v, rcm)

for Orchard, let n = (d, pky, v, p, b, rcm) where { = ToBaseO'Chard(PRFf:e‘Z”d([9} I1p))
let cm] = NoteCommitment(n). if (for Orchard) cm = |, return |

if I2LEOSP56 (Extract ¢ (cmy)) # cm, return L

if reprg (KA.DerivePublic(esk, g4)) # ephemeralKey, return L

return (n, memo).
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Notes:
- g4 has already been computed when applying NoteCommitment, and need not be computed again.

- A previous version of this specification did not have the requirement for the decoded point pky of a Sapling

note to be in the set of prime-order points J”* (i.e. “if ... pky & J™*, return 1”). That did not match the
implementation in zcashd. In fact the history is a little more complicated. The current specification matches
the implementation in librustzcash as of [librustzcash-109], which has been used in zcashd since zcashd v2.1.2.
However, there was another implementation of Sapling note decryption used in zcashd for consensus checks,
specifically the check that a shielded coinbase output decrypts successfully with the zero ovk. This was
corrected to enforce the same restriction on the decrypted pky in zcashd v5.5.0, originally set to activate in a
soft fork at block height 2121200 on both Mainnet and Testnet [zcashd-6459]. (On Testnet this height was
in the past as of the zcashd v5.5.0 release, and so the change would have been immediately enforced on
upgrade.) Since the soft fork was observed to be retrospectively valid after that height, the implementation was
simplified in [zcashd-6725] to use the librustzcash implementation in all cases, which reflects the specification
above. zebra always used the librustzcash implementation.

- As explained in the note in §5.4.9.3 “Jubjub’ on p. 100, absty accepts non-canonical compressed encodings of

Jubjub curve points. Therefore, an implementation MUST use the original ephemeralKey field as encoded in the

transaction as input to PRF° and KDF>*"& and in the comparison against repr, (KAsap“"g.DerivePuinc(esk, g4))-
For consistency this is also what is specified for Orchard.

- For Sapling outgoing ciphertexts, pkxyq could also be non-canonical. After NU5 activation, the above algorithm

explicitly returns L if reprp (pky) # pkxq. However, this is technically redundant with the later check that
returns L if pky & J**, because only small-order Jubjub curve points have non-canonical encodings. This
check is enforced retrospectively for consensus by current zcashd and zebra versions, and for wallet rescanning
by current zcashd. Versions of zcashd prior to [zcashd-6725] could however have accepted notes for which
the outgoing ciphertext contains either a canonical or a non-canonical encoding of Oy for pky.

- [NUS5 onward] For Orchard outgoing ciphertexts, it is not possible for pkxq to be non-canonical.

- [NU5 onward] The domain separators [4] and [5] used in the input to PR

d
Fr.be' are swapped for Orchard

relative to Sapling. This was due to an oversight and there is no good reason for it.

- The comments in §4.20.2 Decryption using an Incoming Viewing Key (Sapling and Orchard)’ on p.66

concerning calculation of p, detection of spent notes, and decryption of transmitted note ciphertexts for
transactions in the mempool also apply to notes decrypted by this procedure.

Non-normative note: Implementors should pay close attention to similarities and differences between this
procedure and §4.20.2 ‘Decryption using an Incoming Viewing Key (Sapling and Orchard)’ on p. 66, especially

that:

- in this procedure, the ephemeral private key esk’ derived from rseed is checked to be identical to that obtained

from op (when leadByte # 0x01);

- in this procedure, pky is obtained from op rather than being derived as KA>*P"8 DerivePublic(ivk, g4 );

- in this procedure, the check that KAS*P"€ DerivePublic(esk,gq) = epk is unconditional rather than being

dependent on leadByte # 0x01, and it uses the esk obtained from op;

- [NU5 onward] for the same reason as in §4.20.2 on p. 66, epk cannot be Op.

4.21 Block Chain Scanning (Sprout)

Let £272"" be as defined in §5.3 ‘Constants’ on p.72.

Let Note®>™°"* be as defined in § 3.2 ‘Notes’ on p.13.

Let KASP®" be as defined in § 5.4.5.1 ‘Sprout Key Agreement’ on p. 86.

Sprout.
Let ivk = (apy ¢ Blere I Skene 2 KASP™¥ Private) be the incoming viewing key corresponding to ag,, and let pk,. be
the associated transmission key, as specified in §4.2.1 ‘Sprout Key Components’ on p. 35.
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The following algorithm can be used, given the block chain and a Sprout spending key ag, to obtain each note sent
to the corresponding shielded payment address, its memo field, and its final status (spent or unspent).

let mutable ReceivedSet : 9(Note™ " x BY*1?) « (}

let mutable SpentSet : P(Note>™") « {}

Sprout:

let mutable NullifierMap : B*r | — Note>™®“* +— the empty mapping
for each transaction tx:
for each JoinSplit description in tx:
let (epk, C{"yev) be the transmitted notes ciphertext of the JoinSplit description
for 4 in 1..N"":

Attempt to decrypt the transmitted notes ciphertext component (epk, C;") using ivk with the
algorithm in §4.19.2 ‘Decryption (Sprout)’ on p.64. If this succeeds with (n, memo):

Add (n, memo) to ReceivedSet.

Calculate the nullifier nf of n using ay as in §4.16 ‘Computing p values and Nullifiers’ on p.56.
Add the mapping nf — n to NullifierMap.

let nf, Lo« be the nullifiers of the JoinSplit description
foriin 1..N°: if nf; is present in NullifierMap, add NullifierMap(nf;) to SpentSet
return (ReceivedSet, SpentSet).

4.22 Block Chain Scanning (Sapling and Orchard)

In Sapling and Orchard, block chain scanning requires only the nk and ivk key components, rather than a spending
key as in Sprout. Typically, these components are derived from a full viewing key (§4.2.2 ‘Sapling Key Components’
on p.35 or §4.2.3 ‘Orchard Key Components’ on p. 37).

Let £pRrrnfsapling P€ as defined in §5.3 ‘Constants’ on p.72.

Let Note be Note>*P™™ or Note? "™ as defined in § 3.2 ‘Notes’ on p. 13.

Let KA be either KAS®P'"8 a5 defined in § 5.4.5.3 on p. 87, or KA?" " as defined in §5.4.5.5 on p. 88.
Let NullifierType be Y [erromsapins /8] £y Sapling, or I, for Orchard.

The following algorithm can be used, given the block chain and (nk, ivk), to obtain each note sent to the corre-
sponding shielded payment address, its memo field, and its final status (spent or unspent).

let mutable ReceivedSet : ZP(Note x BY™'?) « {}

let mutable SpentSet : 9P(Note) < {}

let mutable NullifierMap : (NullifierType — Note) < the empty mapping

for each transaction tx:
for each Output description or Action description in tx:
Attempt to decrypt the transmitted note ciphertext components epk and C*" using ivk with the algorithm

§4.20.2 ‘Decryption using an Incoming Viewing Key (Sapling and Orchard)’ on p. 66.
If this succeeds with (n, memo):

Add (n, memo) to ReceivedSet.

Calculate the nullifier nf of n using nk as in §4.16 ‘Computing p values and Nullifiers’ on p.56.
(This also requires pos from the Output description for Sapling notes.)

Add the mapping nf — n to NullifierMap.

for each nullifier nf of a Spend description or Action description in tx:
if nf is present in NullifierMap, add NullifierMap(nf) to SpentSet

return (ReceivedSet, SpentSet).
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Non-normative notes:

- The above algorithm does not use the ovk key component, or the C°** transmitted note ciphertext component.

When scanning the whole block chain, these are indeed not necessary. The advantage of supporting decryption
using ovk as described in §4.20.3 ‘Decryption using a Full Viewing Key (Sapling and Orchard)’ on p.68,
is that it allows recovering information about the note plaintexts sent in a transaction from that transaction
alone.

- When scanning only part of a block chain, it may be useful to augment the above algorithm with decryption
of C°** components for each transaction, in order to obtain information about notes that were spent in the
scanned period but received outside it.

- The above algorithm does not detect notes that were sent “out-of-band” or with incorrect transmitted note
ciphertexts. It is possible to detect whether such notes were spent only if their nullifiers are known.

5 Concrete Protocol

5.1 Integers, Bit Sequences, and Endianness

All integers in Zcash-specific encodings are unsigned, have a fixed bit length, and are encoded in little-endian byte
order unless otherwise specified .

The following functions convert between sequences of bits, sequences of bytes, and integers:

- I2LEBSP : (£ : N) x {0..2°~1} — BY, such that I2LEBSP,(z) is the sequence of ¢ bits representing z in
little-endian order;

- I2LEOSP : (¢ : N) x {0..2°-1} — BYlceiline(¢/8)] such that 12LEBSP,(z) is the sequence of ceiling (¢/8) bytes
representing z in little-endian order;

- 12BEBSP : (¢ : N) x {0..2°~1} — B such that I2BEBSP,(z) is the sequence of /¢ bits representing z in
big-endian order.

- LEBS2IP : (¢: N) x Bl — {0..2°~1} such that LEBS2IP,(S) is the integer represented in little-endian order
by the bit sequence S of length ¢.

- LEOS2IP : (¢ : N| £ mod 8 = 0) x BY/® _5 {0..2°~1} such that LEOS2IP,(S) is the integer represented in
little-endian order by the byte sequence S of length ¢/8.

- BEOS2IP : (¢ : N| £ mod 8 = 0) x BY&/8 {0..2°~1} such that BEOS2IP,(S) is the integer represented in
big-endian order by the byte sequence S of length ¢/8.

. LEBS20SP : (¢ : N) x Bl — pylcene(/8)] gefined as follows: pad the input on the right with 8 - ceiling (¢/8) — ¢
zero bits so that its length is a multiple of 8 bits. Then convert each group of 8 bits to a byte value with the
least significant bit first, and concatenate the resulting bytes in the same order as the groups.

- LEOS2BSP : (¢ : N| £ mod 8 = 0) x B""e(¢/8)] _, Bl defined as follows: convert each byte to a group of 8
bits with the least significant bit first, and concatenate the resulting groups in the same order as the bytes.

5.2 Bitlayout diagrams

We sometimes use bit layout diagrams, in which each box of the diagram represents a sequence of bits. Diagrams
are read from left to right, with lines read from top to bottom; the breaking of boxes across lines has no significance.
The bit length ¢ is given explicitly in each box, except when it is obvious (e.g. for a single bit, or for the notation [0]°
representing the sequence of ¢ zero bits, or for the output of LEBS20SP,).

The entire diagram represents the sequence of bytes formed by first concatenating these bit sequences, and then
treating each subsequence of 8 bits as a byte with the bits ordered from most significant to least significant. Thus
the most significant bit in each byte is toward the left of a diagram. (This convention is used only in descriptions
of the Sprout design; in the Sapling and Orchard additions, bit sequence/byte sequence conversions are always
specified explicitly.) Where bit fields are used, the text will clarify their position in each case.
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5.3 Constants

Define:

MerkleDepth®™°"* : N := 29
MerkleDepth>*'"€ : N := 32
MerkleDepth®™" : N := 32
3Pt o N = 256

(pePite 2 N := 255

gorchard s N = 255

N9 s N :=2

N™ @ N:=2

Lyatwe « N =64

lnsig © N := 256

Pt N = 256

CpRFexpand * N := 512
CpRFnfsapling « N := 250
3Pt s N = 256

lseeq @ N := 256

0, N =252

7P s N = 252

ly 2N =256

ly:N:=88

g o N := 256

(33PIne s N .= 251

o 2 N := 256

(2Pl N .= 252

[Orchard ° N := 255

“scalar

Orchard . oFEE
lpoee <N :=255

Sprout Sprout
Uncommitted ™" ¢ Blfvere] . [q] ‘e

. Saplin

Uncommitted®™ : Blew] :— 2L EBSP supins (1)
“Merkle

Uncommitted®™™™ : {0 .. gp — 1} := 2

MAX_MONEY : N := 2.1-10'° (zatoshi)

653600, for Mainnet

BlossomActivationHeight : N :=
584000, for Testnet

1046400, for Mai t
CanopyActivationHeight : N :=  foramne
1028500, for Testnet

Z1P212GracePeriod : N := 32256

1687104, for Mainnet

NUFiveActivationHeight : N :=
1842420, for Testnet
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SlowStartInterval : N := 20000
PreBlossomHalvinglnterval : N := 840000
MaxBlockSubsidy : N := 1.25-10° (zatoshi)
NumFounderAddresses : N := 48

FoundersFraction : Q := £

243
2

— 1, for Mainnet
PoWLimit : N := {2251 , for Mainne

— 1, for Testnet
PoWAveragingWindow : N := 17
PoWMedianBlockSpan : N := 11
PoWMaxAdjustDown : Q := %

PoWMaxAdjustUp : Q := %

PoWDampingFactor : N :=4
PreBlossomPoWTargetSpacing : N := 150 (seconds).
PostBlossomPoW TargetSpacing : N := 75 (seconds).

5.4 Concrete Cryptographic Schemes
5.4.1 Hash Functions

5.4.1.1 SHA-256, SHA-256d, SHA256Compress, and SHA-512 Hash Functions

SHA-256 and SHA-512 are defined by [NIST2015].
Zcash uses the full SHA-256 hash function to instantiate NoteCommitment>P!®
SHA-256 : BYN —, py(32
[NIST2015] strictly speaking only specifies the application of SHA-256 to messages that are bit sequences, producing
outputs (‘message digests”) that are also bit sequences. In practice, SHA-256 is universally implemented with a

byte-sequence interface for messages and outputs, such that the most significant bit of each byte corresponds to
the first bit of the associated bit sequence. (In the NIST specification “first” is conflated with “leftmost”)

SHA-256d, defined as a double application of SHA-256, is used to hash block headers:
SHA-256d : BY" — Bv(*2
Zcash also uses the SHA-256 compression function, SHA256Compress. This operates on a single 512-bit block and

excludes the padding step specified in [NIST2015, section 5.1].

That is, the input to SHA256Compress is what [NIST2015, section 5.2] refers to as “the message and its padding” The
Initial Hash Value is the same as for full SHA-256.

SHA256Compress is used to instantiate several Pseudo Random Functions and MerkleCRH®P™"".
SHA256Compress : BI°12 — B[2%6]

The ordering of bits within words in the interface to SHA256Compress is consistent with [NIST2015, section 3.1], i.e.
big-endian.

Ed25519 uses SHA-512:
SHA-512 : YNl _, gyl64l

The comment above concerning bit vs byte-sequence interfaces also applies to SHA-512.
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5.4.1.2 BLAKE2 Hash Functions

BLAKE? is defined by [ANWW2013]. Zcash uses both the BLAKE2b and BLAKE?2s variants.

BLAKE2b-£(p, x) refers to unkeyed BLAKE2b-/ in sequential mode, with an output digest length of £/8 bytes, 16-byte
personalization string p, and input z.

BLAKE2b is used to instantiate hSigCRH, EquihashGen, and KDF*P™", From Overwinter onward, it is used to compute
SIGHASH transaction hashes as specified in [ZIP-143], or as in [ZIP-243] after Sapling activation, or as in [ZIP-244]

for version 5 transactions. For Sapling, it is also used to instantiate PRF®?™" PRF°*S%Pling K DFS2PIng 41\ in the
RedJubjub signature scheme which instantiates SpendAuthSig>*"™"¢ Sapling

and BindingSig
BLAKE2b-¢ : BY!'% gyl _; pyl?/8]

Note: BLAKE2b-{ is not the same as BLAKE2b-512 truncated to ¢ bits, because the digest length is encoded in the
parameter block.

BLAKE2s-¢(p, x) refers to unkeyed BLAKE2s-¢ in sequential mode, with an output digest length of £/8 bytes, 8-byte
personalization string p, and input x.

*

. . ®
BLAKE2s is used to instantiate PRF"™2P"& CRH"* and GroupHash’ = .

BLAKE2s-¢ : BY®! » YN _, gyl¢/s]

5.4.1.3 Merkle Tree Hash Function

MerkleCRHP®" and MerkleCRH>**'"" and Merkle CRHO""" are used to hash incremental Merkle tree hash values for
Sprout and Sapling and Orchard respectively.

MerkleCRHP"* Hash Function

Sprout Sprout Sprout

MerkleCRH®P™" : {0 .. MerkleDepth®P®"* — 1} x Blfwerel y Blovenel _y Bllwenie) js defined as follows:

erkle ayer, leftx, rightx) := 56Compress -bit leftx -bit rightx .
MerkleCRHP™U(| lef h SHA256C 256-bit lef 256-bi h

SHA256Compress is defined in §5.4.1.1 ‘SHA-256, SHA-256d, SHA256Compress, and SHA-512 Hash Functions’ on
p-73.

Security requirement: SHA256Compress must be collision-resistant, and it must be infeasible to find a preimage
 such that SHA256Compress(z) = [0]*°°.

Notes:

- The layer argument does not affect the output.

- SHA256Compress is not the same as the SHA-256 function, which hashes arbitrary-length byte sequences.

MerkleCRH>*""¢ Hash Function

Let PedersenHash be as specified in §5.4.1.7 ‘Pedersen Hash Function’ on p.77.
Sapling Sapling Sapling

MerkleCRH®*P""€ : {() . MerkleDepth>P™"e — 1} x Blfwer] 5 Bllvenel _ plvenie] s defined as follows:

MerkleCRH>*P"™¢(|ayer, leftx, rightx) := PedersenHash(“Zcash_PH”, Ix || leftx || rightx)
where [x = 12LEBSP;; (MerkleDepth>**"™ — 1 — layer).

Security requirement: PedersenHash must be collision-resistant.
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Note: The prefix [x provides domain separation between inputs at different layers of the note commitment

tree. NoteCommit>**"™, Jike PedersenHash, is defined in terms of PedersenHashToPoint, but using a prefix that cannot
collide with a layer prefix, as noted in §5.4.8.2 ‘Windowed Pedersen commitments’ on p.94.

MerkleCRHO""*"d Hash Function

Let SinsemillaHash be as specified in § 5.4.1.9 ‘Sinsemilla Hash Function’ on p.79.
MerkleCRHO™ 2 {0 .. MerkleDepth® ™ — 1} x {0..qp — 1} x {0..qp — 1} — {0..gp — 1} is defined as follows:

0, if hash = L

MerkleCRH®"""(layer, left, right) := ,
hash, otherwise

where hash = SinsemillaHash(“z. cash:0rchard-MerkleCRH", Ix || leftx || rightx)
Ix = I2LEBSP;, (MerkleDepth®™ "™ — 1 — layer)
leftx = I2LEBSP o (left)

“Merkle

right« = [2LEBSP jorchara (right) .

“Merkle

Security requirements:

- SinsemillaHash must be collision-resistant.

- It must be infeasible to find a input of length 10 + 2 - £91"2" bits to SinsemillaHash that yields output 1.

Note: The prefix I* provides domain separation between inputs at different layers of the note commitment tree.

5.4.14 hg, Hash Function
hSigCRH is used to compute the value hg;, in §4.3 ‘JoinSplit Descriptions’ on p. 38.

hSigCRH(randomSeed, nfc{l.c.jNoId, joinSplitPubKey) := BLAKE2b-256(“ZcashComputehSig”, hSiglnput)

where

hSiginput := | 256-bit randomSeed | 256-bitnf* .|  256-bit nf3 256-bit joinSplitPubKey |.

BLAKE2b-256(p, x) is defined in § 5.4.1.2 ‘BLAKEZ2 Hash Functions’ on p.74.

Security requirement: BLAKE2b-256(“ZcashComputehSig”, x) must be collision-resistant on x.

5.4.1.5 CRH"* Hash Function

CRHY is used to derive the incoming viewing key ivk for a Sapling shielded payment address. For its use when
generating an address see §4.2.2 ‘Sapling Key Components’ on p. 35, and for its use in the Spend statement see
§4.18.2 ‘Spend Statement (Sapling)’ on p.59.

It is defined as follows:

/Savling

CRHY (akx, nkx) := LEOS2IP,54(BLAKE2s-256(“Zcashivk”, crhlnput)) mod 2
where

crhlnput::’ LEBS20SP,s ¢ (ak) | LEBS20SP,s (nk) \

BLAKE2s-256(p, x) is defined in §5.4.1.2 ‘BLAKE2 Hash Functions’ on p.74.
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Saplin,

Security requirement:  LEOS2IP,;,(BLAKE2s-256(“Zcashivk”, ) mod 2" " must be collision-resistant on a 64-
byte input z. Note that this does not follow from collision resistance of BLAKE2s-256 (and the best possible concrete
security is that of a 251-bit hash rather than a 256-bit hash), but it is a reasonable assumption given the design,
structure, and cryptanalysis to date of BLAKE2s.

Non-normative note: BLAKE2s has a variable output digest length feature, but it does not support arbitrary
bit lengths, otherwise it would have been used rather than external truncation. However, the protocol-specific
personalization string together with truncation achieve essentially the same effect as using that feature.

5.4.1.6 DiversifyHash>*"""¢ and DiversifyHash®"*¥ Hash Functions

DiversifyHash>"™¢ : Bl — 0% {1} is used to derive a diversified base in §4.2.2 ‘Sapling Key Components’ on
p- 35.

(r)=
Let GroupHash!  and U be as defined in §5.4.9.5 ‘Group Hash into Jubjub’ on p.102.

Define
) ()=
DiversifyHash®*"%(d) := GroupHash}, (“Zcash_gd”, LEBS20SP,,(d)).

DiversifyHash®"" : Bl _, P* is used to derive a diversified base in §4.2.3 ‘Orchard Key Components’ on p. 37.
Let GroupHash” be as defined in §5.4.9.8 ‘Group Hash into Pallas and Vesta’ on p.105.
Define

GroupHash® (“z.cash:0rchard-gd”, "), if P = Op

DiversifyHash°™"d(d) := { .
P, otherwise

where P = GroupHash” (“z. cash:Orchard-gd”, LEBS20SP, (d)).
The following security property and notes apply to both Sapling and Orchard.

Security requirement:  Unlinkability: Given two randomly selected shielded payment addresses from different
spend authorities, and a third shielded payment address which could be derived from either of those authorities,
such that the three addresses use different diversifiers, it is not possible to tell which authority the third address
was derived from.

Non-normative notes:

()%

. Suppose that GroupHash’  (restricted to inputs for which it does not return 1) is modelled as a random oracle

from diversifiers to points of order r; on the Jubjub curve. In this model, Unlinkability of DiversifyHash>*"""

holds under the Decisional Diffie-Hellman assumption on the prime-order subgroup of points on the Jubjub
curve.

To prove this, consider the ElGamal encryption scheme [ElGamal1985] on this prime-order subgroup, re-
stricted to encrypting plaintexts encoded as the group identity O;. (ElGamal was originally defined for F),
but works in any prime-order group.) ElGamal public keys then have the same form as diversified payment

addresses. If we make the assumption above on GroupHash’ W, then generating a new diversified payment
address from a given address pk, gives the same distribution of (g4, pky’) pairs as the distribution of EIGamal
ciphertexts obtained by encrypting O; under pk. TODO: check whether this is justified. Then, the definition
of key privacy (IK-CPA as defined in [BBDP2001, Definition 1]) for ElIGamal corresponds to the definition
of Unlinkability for DiversifyHash®*"™8 (IK-CCA corresponds to the potentially stronger requirement that
DiversifyHash>*""™ remains Unlinkable when given Diffie-Hellman key agreement oracles for each of the
candidate diversified payment addresses.) So if ElGamal is key-private, then DiversifyHash>*"""€ is Unlinkable
under the same conditions. [BBDP2001, Appendix Al gives a security proof for key privacy (both IK-CPA and
[K-CCA) of ElGamal under the Decisional Diffie-Hellman assumption on the relevant group. (In fact the proof
needed is the “small modification” described in the last paragraph in which the generator is chosen at random
for each key.)
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- Itis assumed (also for the security of other uses of the group hash, such as Pedersen hashes and commitments)
that the discrete logarithm of the output group element with respect to any other generator is unknown. This
assumption is justified if the group hash acts as a random oracle. Essentially, diversifiers act as handles to
unknown random numbers. (The group hash inputs used with different personalizations are in different
“namespaces”)

- Informally, the random self-reducibility property of DDH implies that an adversary would gain no advantage
from being able to query an oracle for additional (gg4, pkq) pairs with the same spending authority as an existing
shielded payment address, since they could also create such pairs on their own. This justifies only considering
two shielded payment addresses in the security definition.

TODO: FIXME This is not correct, because additional pairs don't quite follow the same distribution as an address
with a valid diversifier. The security definition may need to be more complex to model this properly.

- An 88-bit diversifier cannot be considered cryptographically unguessable at a 128-bit security level; also,
rﬂldomly chosen diversifiers are likely to suffer birthday collisions when the number of choices approaches
27
If most users are choosing diversifiers randomly (as recommended in §4.2.2 ‘Sapling Key Components’ on
p. 35), then the fact that they may accidentally choose diversifiers that collide (and therefore reveal the fact
that they are not derived from the same incoming viewing key) does not appreciably reduce the anonymity
set.

In [ZIP-32] and §4.2.3 ‘Orchard Key Components’ on p.37 an 88-bit Pseudo Random Permutation, keyed
differently for each node of the derivation tree, is used to select new diversifiers. This resolves the potential
problem, provided that the input to the Pseudo Random Permutation does not repeat for a given node.

- If the holder of an incoming viewing key permits an adversary to ask for a new address for that incoming
viewing key with a given diversifier, then it can trivially break Unlinkability for the other diversified payment
addresses associated with the incoming viewing key (this does not compromise other privacy properties).
Implementations SHOULD avoid providing such a “chosen diversifier” oracle.

5.4.1.7 Pedersen Hash Function

PedersenHash is an algebraic hash function with collision resistance (for fixed input length) derived from assumed
hardness of the Discrete Logarithm Problem on the Jubjub curve. It is based on the work of David Chaum, Ivan
Damgard, Jeroen van de Graaf, Jurgen Bos, George Purdy, Eugéne van Heijst and Birgit Pfitzmann in [CDvdG1987],
[BCP1988] and [CvHP1991], and of Mihir Bellare, Oded Goldreich, and Shafi Goldwasser in [BGG1995], with optimiza-
tions for efficient instantiation in zk-SNARK circuits by Sean Bowe and Daira-Emma Hopwood.

PedersenHash is used in the definitions of Pedersen commitments (§5.4.8.2 ‘Windowed Pedersen commitments’ on
p.94), and of the Pedersen hash for the Sapling incremental Merkle tree (§5.4.1.3 ‘MerkleCRH>*"""¢ Hash Function’
on p.74).

LetJ, J©, Oy, qy. r3. ay, and dj be as defined in §5.4.9.3 ‘Jubjub’ on p.100.

Sapling

Let ExtractJm = 70 s Blfewe] be as defined in §5.4.9.4 ‘Coordinate Extractor for Jubjub’ on p.102.
)=
Let FindGroupHash? ~ be as defined in §5.4.9.5 ‘Group Hash into Jubjub’ on p.102.

Let Uncommitted®®'"8 be as defined in §5.3 ‘Constants’ on p.72.

2% 1 -l

,l.e.c:= 63.
15— 63

Let ¢ be the largest integer such that 4 -

Define 7 : BY® x N — JO* by:

(r) =
Z(D, i) := FindGroupHash’ (D, 32-biti — 1 D
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Define PedersenHashToPoint(D : BY®! ar B[Nﬂ) — I as follows:

Pad M to a multiple of 3 bits by appending zero bits, giving M".

Iength(ﬂdJ))
3-c '

Split M’ into n segments M, _,, so that M" = concatg (M, _,,), and each of M, ,,_; is of length 3-¢ bits. (M,, may
be shorter.)

Return Y [(M,)]Z(D,i) : J".

Let n = ceiling (

where () : Bt 1 nl B (0} is defined as:
Let k; = length(M;)/3.
Split M; into 3-bit chunks m, ;. so that M; = concatg(m, ).

i

Write each m;; as [s], 57, s3], and let enc(m;) = (1 — 2-53) - (148} 4+25]) ¢ Z.
kz (79—
Let (M;) = Y " enc(m;)-2"VU7Y.

Sapling

Finally, define PedersenHash : Byl BIN'] _ gl by:
PedersenHash(D, M) := Extract ;e (PedersenHashToPoint(D, M)).

See §A.3.3.9 Pedersen hash’ on p.203 for rationale and efficient circuit implementation of these functions.

Security requirement:  PedersenHash and PedersenHashToPoint are required to be collision-resistant between
inputs of fixed length, for a given personalization input D. No other security properties commonly associated with
hash functions are needed.

Non-normative note: These hash functions are not collision-resistant for variable-length inputs.

Theorem 5.4.1. The encoding function (+) is injective.

k;
Proof. We first check that the range of Z enc(m;) - 240U=Y is a subset of the allowable range {— ”;1 . ”;1 P\ {0}

Jj=1
gte _q
15

The range of this expression is a subset of {—A .. A} \ {0} where A =4- > 2t (=1 —y.

i=1
When ¢ = 63, we have

ote _q

4. 15_ = 0x444444444444444444444444444444444444444444444444444444444444444

r

J; ! _ 0x73EDA753299D7D483339D80809A1D8053341049E6640841684B87 2F6B7BIG5B

k; (i—
so the required condition is met. This implies that there is no “wrap around” and so » enc(m) - 2+(=1 may be
j=
treated as an integer expression.
encis injective. In order to prove that (-) is injective, consider (-)* : BBl £0..2.A} such that (M;)® = (M,)+A.
ks G- .
With k; and m; defined as above, we have (M)™ = ijlenc’(mj) 240U~ where enc’(m;) = enc(m;) + 4 is in
{0..8} and enc’ is injective. Express this sum in hexadecimal; then each m; affects only one hex digit, and it is easy
to see that (-} is injective. Therefore so is (+). O

Since the security proof from [BGG1995, Appendix A] depends only on the encoding being injective and its range not
including zero, the proof can be adapted straightforwardly to show that PedersenHashToPoint is collision-resistant
under the same assumptions and security bounds. Because Extract () is injective, it follows that PedersenHash is

equally collision-resistant.
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5.4.1.8 Mixing Pedersen Hash Function

A mixing Pedersen hash is used to compute p from cm and pos in §4.16 ‘Computing p values and Nullifiers’ on
p. 56. It takes as input a Pedersen commitment P, and hashes it with another input .

i () *
Define [7°*"""8 .— FindGroupHash’  (“Zcash_J_",“")
We define MixingPedersenHash : J x {0..r; — 1} — J by:
MixingPedersenHash(P, z) := P + [x] gSapling.

Security requirement: The function
(r,M,z):{0..r; — 1} X BN x {0..7y — 1} — MixingPedersenHash(WindowedPedersenCommit,. (M), z) : J

must be collision-resistant on (r, M, x).
See §A.3.3.10 ‘Mixing Pedersen hash’ on p.205 for efficient circuit implementation of this function.

5.4.1.9 Sinsemilla Hash Function

SinsemillaHash is an algebraic hash function with collision resistance (for fixed input length) derived from assumed
hardness of the Discrete Logarithm Problem. It is designed by Sean Bowe and Daira-Emma Hopwood. The
motivation for introducing a new discrete-logarithm-based hash function (rather than using PedersenHash) is to
make efficient use of the lookups available in recent proof systems including Halo 2.

SinsemillaHash is used in the definition of SinsemillaCommit (§ 5.4.8.4 ‘Sinsemilla commitments’ on p. 96), and for
the Orchard incremental Merkle tree (§5.4.1.3 ‘MerkleCRH™"*™ Hash Function’ on p.75).

Let P, Op, ¢p, 1p, and bp be as defined in §5.4.9.6 ‘Pallas and Vesta’ on p.103.
Let Extractp : PU{L} — {0..¢gp — 1} U{L} be as defined in §5.4.9.7 ‘Coordinate Extractor for Pallas’ on p.104.
Let GroupHash” be as defined in §5.4.9.8 ‘Group Hash into Pallas and Vesta’ on p.105.

Let Uncommitted®* "™ be as defined in § 5.3 ‘Constants’ on p.72.

Let I2LEOSP ¢ (£: N) x {0..2°—1} — BY"e®/®)] and LEBS2IP ¢ (¢ : N) x B — {0..2°~1} be as defined in §5.1
‘Integers, Bit Sequences, and Endianness’ on p.71.

Let k := 10.

Let ¢ be the largest integer such that 2° < % ie. c:=253.

Define Q : BY" 5 P* and S : {0..2"~1} — P by:

Q(D) := GroupHash"(“z.cash:SinsemillaqQ”, D)
S(j) = GroupHashP(“z.cash:SinsemillaS", I2LEOSP3,(5)).

Define - : PU{L} x PU{L} - PU{L} as incomplete addition on the Pallas curve:

1 o1 =1

1l = P =1

Pl =_1

O]p OIP -

OJP’ (x/’y/) =1
(z,y) + Op =1 ’

. L, 1, ife==x

(z,y) + (2,y) = {(Jc,y) + (2',y), otherwise.
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Define pad(n : {0..c}, M : B =D+t 8y 4o ok 131 as follows:
pad M to n - k bits by appending zero bits, giving M4,
split M™% into n pieces MP** each of length k bits, so that MP**%*? = concaty (MP**).

n’ 1..n
return [ LEBS2IP,, (MP***) for i from 1 up to n ].

Define SinsemillaHashToPoint(D : BY™ a7 : BHO-F<lly s py {1} as follows:
letn :{0..c} = ceiling (%)
let m = pad,,(M)
let mutable Acc + Q(D)
fori from 1 up to n:
set Acc +— (Acc -+ S(m;)) -+ Acc
return Acc.
Finally, define SinsemillaHash : BY™ x BHO-F< 40 g — 1} U {1} by:
SinsemillaHash(D, M) := Extract (SinsemillaHash ToPoint(D, M)).

See [Zcash-Orchard, section “Sinsemilla’] for rationale and efficient circuit implementation of these functions.

Security requirement:  SinsemillaHash and SinsemillaHashToPoint are required to be collision-resistant between
inputs of fixed length, for a given personalization input D. It must also be infeasible to find inputs (D, M) such
that SinsemillaHashToPoint(D, M) = L. No other security properties commonly associated with hash functions are
needed.

Non-normative notes:

- These hash functions are not collision-resistant across variable-length inputs for the same D (that is, it is
assumed that a single input length will be used for any given D).

- The intermediate value [2] GroupHash]P(“z.cash:SinsemillaQ", D) for the first iteration of the loop can be
precomputed, if D is known in advance.

Security argument

We show a correspondence between Sinsemilla and a vector Pedersen hash, which allows using the security
argument from [BGG1995] to show that collision-resistance can be tightly reduced to the Discrete Logarithm
Problem in P.

0, ifa #b

Deﬁmeé(a,b):{1 £ )
, ifa=b.

Lemma 5.4.2. An injectivity property for Sinsemilla.

Letn : {0..c}, and consider a sequence of message pieces m : {0..2"— 1}["]. Collect the scalars by which each
generator S(j) is multiplied in the algorithm for SinsemillaHashToPoint:

Define x(m) = [Z (2"7" - 8(m;, ) (mod rp) forj from 0 up to 2" — 1].

i=1
k
The mapping m : {0..2°~1}" — y(m) : EP[Q l'is injective.

Proof. There is an injective mapping from m to the matrix of bits with 2* columns and n rows, such that the bit at
(1-based) column j + 1 and row i is set if and only if m; = j. Then the binary representations of the elements of
x(m) are given by the columns of this matrix, and they do not overflow due to the requirement that 2" < 2° < %
The claim follows. O
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Theorem 5.4.3. Collision resistance of SinsemillaHash and SinsemillaHashToPoint.

Let D : BY™ pe a personalization input, and let ¢ : {0 .. k - c}. Finding a collision M, M" : B with M # M’ such that
SinsemillaHash ToPoint(D, M) = SinsemillaHashToPoint(D, M") # L efficiently yields a nontrivial discrete logarithm
relation, and similarly for SinsemillaHash(D, M) = SinsemillaHash(D, M") # L.

Proof. Without loss of generality we can restrict to the case where ¢ is a multiple of k: since pad,, is injective on
inputs of a given bit length, collision resistance for { = n - k bits implies collision resistance for each length that
pads ton - k bits. Since £ € {0.. k- ¢} we have n € {O ..¢}. Then whenever SinsemillaHashToPoint(D, M) # L,

SinsemillaHashToPoint(D, M) = )+ Z m);+1] S(j), where m = pad,,(M).

(The j + 1 is just because sequence indices are 1-based.)

This is a Pedersen vector hash of the y(m) elements, with a fixed offset [2"] Q(D). The fixed offset does not
affect collision resistance in this context. (See below for why it cannot be eliminated for SinsemillaHash, or when
using incomplete addition.) Theorem 5.4.4 on p. 82 will prove that a L output from SinsemillaHashToPoint yields a
nontrivial discrete log relation. It follows that the collision resistance of SinsemillaHashToPoint can be tightly reduced,
via the proof in [BGG1995, Appendix A], to the Discrete Logarithm Problem over P.

Note that [BGG1995] requires for their main scheme that the scalars are nonzero, which is not necessarily the case
in our context. However, their proof in Appendix A does not depend on this, given that n is fixed. The restriction
that scalars are nonzero appears to have been motivated by wanting to support variable-length messages and
incremental hashing, which we do not.

Now we consider SinsemillaHash. We want to prove that, for given D, if we can find two distinct messages M and
M’ such that Extractg (SinsemillaHashToPoint(D, M)) = Extractg (SinsemillaHashToPoint(D, M')) # L then we can
efficiently extract a discrete logarithm.

The inputs to Extracty are not L, therefore they are in P. Extracty maps P,Q € P to the same output if and
only if P = 4+Q. So either SinsemillaHashToPoint(D, M) = SinsemillaHashToPoint(D, M’) (in which case use the
original Pedersen hash proof) or SinsemillaHashToPoint(D, M) = —SinsemillaHashToPoint(D, M"). In the latter case,
let m = pad,, (M) and m’ = padn(M/), then we have

2 (D Z m)yalSG) = ~(2710(D) + X (), 1 8()
2 QD) + 3 Tx(m) 1 + x(m);11) () = 0

Because 2" < rp — 1, the coefficients (mod 73) are not all zero, and therefore this is a nontrivial discrete logarithm
relation between independent bases. O

Non-normative notes:

- [JT2020, Lemma 3] proves a tight reduction from finding a nontrivial discrete logarithm relation in a prime-
order group to solving the Discrete Logarithm Problem in that group.

- The above theorem easily extends to the case where additional scalar multiplication terms with independent
bases may be added to the SinsemillaHash ToPoint output before applying Extract. This is needed to show secu-
rity of the SinsemillaShortCommit commitment scheme defined in § 5.4.8.4 ‘Sinsemilla commitments’ on p. 96.
It is also needed to show security of nullifier derivation defined in § 4.16 ‘Computing p values and Nullifiers’
on p. 56 against Faerie Gold attacks, as described in § 8.4 ‘Faerie Gold attack and fix’ on p.139.

. Assuming that GroupHash® acts as a random oracle, it can also be proven that SinsemillaHashToPoint and
SinsemillaHash are collision-resistant across different personalization inputs (regardless of input length).
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Theorem 5.4.4. A L output from SinsemillaHashToPoint yields a nontrivial discrete log relation.

Proof. For convenience of reference, we repeat the algorithm for SinsemillaHashToPoint in terms of the message
pieces m : {0..2°~1}") with indexing of the intermediate values of Acc:

let Accy + Q(D)

fori from 1 up to n:
let Acc; + (Acc;_; i+ S(my)) -+ Acc; 4
return Acc,,.

We have an exceptional case if and only if Acc;_; = +S(m;) or Acc;_; + S(m;) = £ Acc;_;. (Since none of Q(D) or
{8G)ljeA{o0. ok 1}} are Op, no intermediate results can be Op unless one of the preceding conditions occurs.)

If Acc;_; + S(my;) = Acc;_;, then we have S(m;) = Op contrary to assumption. So exceptional cases occur
only if [a] Acc;_; + S(m;) = Op for some i € {1..n}, and a = —1 (for the case Acc,_; = S(m;)) or a = 1 (for
Acc;,_; = —S(m;)) or a = 2 (for Acc;_; + S( ;) = —Acc;_q).

Acc; has a representation [2'] Q(D) + Z [X j+1]1S(j) for some X; : {0.. 2 1}[2 So given m that results in an

exceptional case, the nontrivial discrete logarlthm relation [a - 2'] Q(D) + (Z [a- X; ;41]S() )) +S(m;) = Op

is easily computable from m. The coefficients in this representation do not overﬂow since X; ;11 < 2" for all
ie{l.n}andje{0..2"~1};and |a-2"| <rp—1forallie {l..n}and a € {—1,1,2}. O

Similarly, a | output from SinsemillaHash yields a nontrivial discrete logarithm relation, because Extracty only
returns L when its inputis L.

Since by assumption it is hard to find a nontrivial discrete logarithm relation, we can argue that it is safe to use
incomplete additions when computing Sinsemilla inside a circuit.

5.4.1.10 PoseidonHash Function

Poseidon is a cryptographic permutation described in [GKRRS2019]. It operates over a sequence of finite field
elements, which we instantiate as IF,_ 3],

The following specification is intended to follow [GKRRS2019] and Version 1.1 of the Poseidon reference implemen-
tation [Poseidon-1.1].”

The S-box function is z — z°. The number of full rounds Ry is 8, and the number of partial rounds R is 56.

We use Poseidon in a sponge configuration [BDPA2011] (with elementwise addition in [, replacing exclusive-or of

bit stringsi) to construct a hash function. The sponge capacity is one field element, the rate is two field elements, and
the output is one field element. We use the “Constant-Input-Length” mode described in [GKRRS2019, section 4.2]:

for a 2-element input, the initial value of the capacity element is 2°°, and no padding of the input message is needed.

That is, if f : T, Bl F,. 31 is the Poseidon permutation, then the hash function PoseidonHash : F,  x F, — F,_is
specified as:

PoseidonHash(z, y) = f([z,y,2%]); (using 1-based indexing).

The MDS matrix and round constants are generated by generate_parameters_grain.sage in Version 1.1 of the
reference implementation. The number of full and partial rounds are as calculated by calc_round_numbers.py in
that implementation, for a 128-bit security level “with margin”

7 Previous versions of the reference implementation were inconsistent with the paper. For verifying the parameters used in Zcash, we
recommend the fork [Poseidon-ZcL.1] which avoids use of the obsolete PyCrypto library.

8 The sponge construction was originally proposed as operating on an arbitrary group. [BDPA2007]
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Non-normative notes:

- The choice of MDS matrix and the number of rounds take into account cryptanalytic results in [KR2020] and
[BCD+2020]. A detailed analysis of related matrix properties is given in [GRS2020].

- [BCD+2020] says that ".. finite fields I, with a limited number of multiplicative subgroups might be preferable,
i.e. one might want to avoid ¢— 1 being smooth. This implies that the fields which are suitable for implementing
FFT may be more vulnerable to integral attacks.” I, is such a field; the factorization of ¢p — 1 1is 232.3.463 -
539204044132271846773 - 8999194758858563409123804352480028797519453.

Furthermore, previous cryptanalysis of Poseidon has focussed mainly on the case of S-box z — °. That variant
cannot be used in [,  because x — 2° would not be a permutation. o = 5 is the smallest integer for which
x+— 2 is a permutation in I, .

On the other hand, the number of rounds chosen includes a significant security margin, even taking into
account these considerations. For small ¢, such as ¢t = 3 as used here, the results of [KR2020] are positive
for security since they indicate that the number of active S-boxes through the middle rounds is larger than
originally estimated by the Poseidon designers (and the number of rounds is based on this original conservative
estimate).

Also note that the use of Poseidon in Orchard is very conservative. First, the sponge mode limits an adversary
to only being able to influence part of the Poseidon permutation input, and we use it only to construct a
PRF (PRF"O""" a5 described in §5.4.2 ‘Pseudo Random Functions’ on p.84). Half of the sponge input is a
random key nk, known only to holders of a full viewing key, and the remaining half p comes from a previous
nullifier which is effectively a random affine-short-Weierstrass x-coordinate on the Pallas curve. Then
the PRF is used to enhance the security of a discrete-logarithm-based nullifier construction (described in
[Zcash-Orchard, Section 3.5 Nullifiers]) against a potential discrete-log-breaking adversary. Given the weak
assumption that the PoseidonHash sponge produces output that preserves sufficient entropy from the inputs
nk and p, this nullifier construction would still be secure under a Decisional Diffie-Hellman assumption on
the Pallas curve, even if the Poseidon-based PRF were distinguishable from an ideal PRF.

. The constant 2°° comes from [GKRRS2019, section 4.2]: “Constant-Input-Length Hashing. The capacity value
is length - (2°) + (0 — 1) where o is the output length.” In this case the input length (length) is 2 field elements,
and the output length is 1 field element.

5.4.1.11 Equihash Generator

EquihashGen,, , is a specialized hash function that maps an input and an index to an output of length n bits. It is
used in § 7.7.1 ‘Equihash’ on p.130.

Let powtag :=| 64-bit “ZcashPoW” | 32-bitn | 32-bitk

Let powcount(g) := | 32-bitg

Let EquihashGen,, ,.(S,7) := Ty 11 . p4rn. Where

m = floor(512)'

n ’

h=(—1modm)- n;
T = BLAKE2b-(n - m) (powtag, S || powcount(floor(:1))).

Indices of bits in T are 1-based.

BLAKE2b-/(p, x) is defined in §5.4.1.2 ‘BLAKE2 Hash Functions’ on p.74.
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Security requirement: BLAKE2b-/(powtag, z) must generate output that is sufficiently unpredictable to avoid
short-cuts to the Equihash solution process. It would suffice to model it as a random oracle.

Note: When EquihashGen is evaluated for sequential indices, as in the Equihash solving process (§ 7.7.1 ‘Equihash’
on p.130), the number of calls to BLAKE2b can be reduced by a factor of floor(212) in the best case (which is a factor
of 2 for n = 200).

5.4.2 Pseudo Random Functions
Let SHA256Compress be as given in §5.4.1.1 ‘SHA-256, SHA-256d, SHA256Compress, and SHA-512 Hash Functions’
onp.73.

The Pseudo Random Functions PRF*", PRE™PUt PREPK and PRF? from §4.1.2 ‘Pseudo Random Functions’ on
p. 24, are all instantiated using SHA256Compress:

PRF2%" (¢) := SHA256Compress (] 1| 1 | 0 | 0| 9252-bit z |8—bit t| [0]** D
PRFASPot () :— SHA256Compress (] 1| 1| 1 0| 252-bit ag | 256-bit p D
PRF? (i, hg;y) := SHA256Compress (]0 i-[0]0] 252-bit ag, | 256-bit hs;g D
PRF, (i, hsjg) := SHA256Compress (’0 i1 1 | O| 252-bit ¢ | 256-bit hg;g D

Security requirements:
- SHA256Compress must be collision-resistant.

- SHA256Compress must be a PRF when keyed by the bits corresponding to z, ay, or ¢ in the above diagrams,
with input in the remaining bits.

Note: The first four bits -i.e. the most significant four bits of the first byte- are used to separate distinct uses of
SHA256Compress, ensuring that the functions are independent. As well as the inputs shown here, bits 1011 in this
position are used to distinguish uses of the full SHA-256 hash function; see §5.4.8.1 ‘Sprout Note Commitments’
onp.93.

(The specific bit patterns chosen here were motivated by the possibility of future extensions that might have
increased N° and/or N™" to 3, or added an additional bit to ay, to encode a new key type, or that would have
required an additional PRF. In fact since Sapling switches to non-SHA256Compress-based cryptographic primitives,
these extensions are unlikely to be necessary.)

PRFP™ is used in §4.2.2 ‘Sapling Key Components’ on p.35 to derive the Spend authorizing key ask and the
proof authorizing key nsk.

It is instantiated using the BLAKE2b hash function defined in § 5.4.1.2 ‘BLAKE2 Hash Functions’ on p.74:
PRFEP™ (1) := BLAKE2b-512(“Zcash_ExpandSeed”, LEBS20SP,s(sk) || ¢)

Security requirement: BLAKE2b-512(“Zcash_ExpandSeed”, LEBS20SP,54(sk) || t) must be a PRF for output range
By ferreans/8] hen keyed by the bits corresponding to sk, with input in the bits corresponding to t.

PRFO>2PM8 i yysed in §4.20.1 ‘Encryption (Sapling and Orchard)’ on p. 65 to derive the outgoing cipher key ock
used to encrypt an outgoing ciphertext.

It is instantiated using the BLAKE2b hash function defined in §5.4.1.2 ‘BLAKE2 Hash Functions’ on p.74:

PRFockSPI"e (¢ ey, ephemeralKey) := BLAKE2b-256(“Zcash_Derive_ock”, ocklnput)

ovk

where ocklnput = | LEBS20SP,54(ovk) | 32-byte cv 32-byte cmu |32—byte ephemeralKey|.
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Security requirement: BLAKE2b-512(“Zcash_Derive_ock”, ocklnput) must be a PRF for output range Sym.K (de-
fined in §5.4.3 ‘Symmetric Encryption’ on p.86) when keyed by the bits corresponding to ovk, with input in the
bits corresponding to cv, cmu, and ephemeralKey.

PRF"5%P!¢ i ysed to derive the nullifier for a Sapling note. It is instantiated using the BLAKE2s hash function
defined in §5.4.1.2 ‘BLAKE2 Hash Functions’ on p.74:

PRF:fkiapIing(p*) = BLAKE2s-256 (“ansh_nf",

LEBS20SP.s(nkx) | LEBS20SP,s(p*) \)

LEBS20SPysg(nkx) | LEBS20SPys(p%) D

must be a collision-resistant PRF for output range B2 when keyed by the bits corresponding to nkx, with input

Security requirement:  The function BLAKE2s-256 (“ansh_nf "

in the bits corresponding to p*. Note that nkx : ,]]5:) is a representation of a point in the rj-order subgroup of the

Jubjub curve, and therefore is not uniformly distributed on B, .,]]5:) is defined in §5.4.9.3 ‘Jubjub’ on p.100.

PRFO*O<hard i used in §4.20.1 ‘Encryption (Sapling and Orchard)’ on p.65 to derive the outgoing cipher key ock
used to encrypt an outgoing ciphertext.

It is instantiated using the BLAKE2b hash function defined in §5.4.1.2 ‘BLAKE2 Hash Functions’ on p.74:

PRFSKO" ¢y, cmx, ephemeralKey) := BLAKE2b-256(“Zcash_Orchardock”, ockinput)

where ocklnput = ’ LEBS20SP,54(ovk) | 32-byte cv | 32-byte cmx |32—byte ephemeralKey|.

Security requirement: BLAKE2b-512(“Zcash_0Orchardock”, ocklnput) must be a PRF for output range Sym.K (de-
fined in §5.4.3 ‘Symmetric Encryption’ on p.86) when keyed by the bits corresponding to ovk, with input in the
bits corresponding to cv, cmx, and ephemeralKey.

Let gp be as defined in §5.4.9.6 ‘Pallas and Vesta’ on p.103.

pREfOrehard . F,. x F, — T, is used as part of deriving the nullifier for an Orchard note.

It is instantiated using the PoseidonHash hash function [GKRRS2019] defined in §5.4.1.10 ‘PoseidonHash Function’
onp. 82:

PRFMO™Mrd () .— PoseidonHash(nk, p).

Security requirement:  PoseidonHash : F,  x I, — F, must be a PRF when keyed by its first argument, with its
second argument as input.

Non-normative notes:

- This construction of a PRF from a sponge is described in [BDPA2011, section 3.12]. It is called “outer-keyed
sponge” in [ADMA2015], or “black-box keying” in [GPT2015]. The results of these papers do not directly apply
because the key is smaller than the rate. However, the result of [GG2015] provides evidence for the security of
this construction (even if it technically considers a situation in which the distinguishing adversary cannot
evaluate the full permutation).

- See §5.4.1.10 ‘PoseidonHash Function’ on p. 82 for further security discussion of how Orchard uses Poseidon.
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5.4.3 Symmetric Encryption

Let Sym.K := B, Sym.P := B"™ and Sym.C = B,

Let the authenticated one-time symmetric encryption scheme Sym.Encrypty (P) be authenticated encryption using
AEAD_ CHACHA2O POLY1305 [RFC-7539] encryption of plaintext P € Sym.P, with empty “associated data’, all-zero
nonce [0]%°, and 256-bit key K € Sym.K.

Similarly, let Sym.Decryptx (C) be AEAD CHACHA20_POLY1305 decryption of ciphertext C € Sym.C, with empty
“associated data", all-zero nonce [0]”°, and 256-bit key K € Sym.K. The result is either the plaintext byte sequence,
or L indicating failure to decrypt.

Note: The “IETF" definition of AEAD_CHACHA20_POLY1305 from [RFC-7539] is used; this has a 32-bit block count
and a 96-bit nonce, rather than a 64-bit block count and 64-bit nonce as in the original definition of ChaCha20.

5.4.4 Pseudo Random Permutations

Let y and ¢4 be as defined in § 5.3 ‘Constants’ on p.72.

PRP? : Brla/8! « Bla) _, Bl%l is 4 Pseudo Random Permutation specified in §4.1.3 ‘Pseudo Random Permutations’
on p. 25. In this specification, it is used to generate diversifiers for Orchard shielded payment addresses in §4.2.3
‘Orchard Key Components’ on p. 37. ([ZIP-32] uses an identical construction to generate diversifiers for Sapling
shielded payment addresses.)

Let FF1-AES256 ;- (tweak, 2:) be the FF1 format-preserving encryption algorithm [NIST2016] using AES with a 256-bit
key K, and parameters radiz = 2, minlen = 88, mazlen = 88. It will be used only with the empty string “" as the
tweak. x is a sequence of 88 bits, as is the output.

Define PRP% (d) := FF1-AES256 4 (“”, d).

Security requirement: FF1-AES256 with tweak fixed to “” must be a secure Pseudo Random Permutation.

Non-normative note: [DKLS2020] describes attacks against FF1 that are practical for some parameterizations.
However, for an 88-bit domain, and 10 rounds as specified in [NIST2016], even the distinguishing attack is no better

than a brute force search for the 256-bit key. Specifically we have r = 5 (half the number of rounds) and n = 44

(half the domain size in bits), so accordmg to [DKLS2020, section 4.2] the data complexity is 22"(("~ D=g)=n _ 9264

and the time complexity is 22"~ —3) = 9308,

5.4.5 Key Agreement And Derivation

5.4.5.1 Sprout Key Agreement

KASP™"t is a key agreement scheme as specified in §4.1.5 ‘Key Agreement’ on p. 25.

It is instantiated as Curve25519 key agreement, described in [Bernstein2006], as follows.

Let KASP®® Public and KASP™" SharedSecret be the type of Curve25519 public keys (i.e. BY®?)), and let KAS""®"* Private
be the type of Curve25519 secret keys.

Let Curve25519(n, q) be the result of point multiplication of the Curve25519 public key represented by the byte se-
quence g by the Curve25519 secret key represented by the byte sequence n, as defined in [Bernstein2006, section 2].

Let KA®™™"" Base := 9 be the public byte sequence representing the Curve25519 base point.

Let clampc,vess19() take a 32-byte sequence z as input and return a byte sequence representing a Curve25519
private key, with bits “clamped” as described in [Bernstein2006, section 3]: “clear bits 0, 1, 2 of the first byte, clear
bit 7 of the last byte, and set bit 6 of the last byte.” Here the bits of a byte are numbered such that bit b has numeric

weight 2°.
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Define KA FormatPrivate(z) = clampcynezssio ().
Define KA DerivePublic(n, ¢) := Curve25519(n, q).
Define KA Agree(n, ¢) := Curve25519(n, q).

5.4.5.2 Sprout Key Derivation

KDF®P™"is a Key Derivation Function as specified in §4.1.6 ‘Key Derivation’ on p. 26.

It is instantiated using BLAKE2b-256 as follows:

KDF®Prout(;, heig, sharedSecret;, epk, pkene ;) := BLAKE2b-256(kdftag, kdfinput)

enc,

where:
kdftag := | 64-bit “ZcashKDF" | 8-biti—1] [0]°° |
kdfinput := ] 256-bit h | 256-bit sharedSecret; 256-bit epk 256-bit pkISY;

BLAKE2b-256(p, ) is defined in §5.4.1.2 ‘BLAKE2 Hash Functions’ on p.74.

5.4.5.3 Sapling Key Agreement

KA3*"8 i 4 key agreement scheme as specified in §4.1.5 ‘Key Agreement’ on p. 25.
It is instantiated as Diffie-Hellman with cofactor multiplication on Jubjub as follows:
Let J, I, J™* and the cofactor hy be as defined in §5.4.9.3 Jubjub’ on p.100.
Define KA Public := J.

Define KAS?®™8 pyblicPrimeSubgroup := J.

Define KAS®P'"& SharedSecret := J.

Define KAS*P™™8 Private := F,,.

Define KA>*"™ DerivePublic(sk, B) := [sk] B.

Define KA Agree(sk, P) := [hy - sk] P.

5.4.5.4 Sapling Key Derivation

KDF®*P"€ is a Key Derivation Function as specified in §4.1.6 ‘Key Derivation’ on p.26.
It is instantiated using BLAKE2b-256 as follows:
KDF>*"'"&(sharedSecret, ephemeralKey) := BLAKE2b-256(“Zcash_SaplingKDF”, kdfinput).

where:

kdfinput := ’ LEBS20SPy5 (repr;(sharedSecret )) | ephemeralKey ‘

BLAKE2b-256(p, x) is defined in §5.4.1.2 ‘BLAKEZ2 Hash Functions’ on p.74.
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5.4.5.5 Orchard Key Agreement

KA is 3 key agreement scheme as specified in §4.1.5 ‘Key Agreement’ on p. 25.
It is instantiated as Diffie-Hellman on Pallas as follows:

Let P be as defined in §5.4.9.6 ‘Pallas and Vesta’ on p.103.

Define KA%™" Public := P*.

Define KA®" "™ SharedSecret := P*.

Define KA?™™ Private := Fr,-

Define KA?™"™ DerivePublic(sk, B) := [sk] B.

Define KA?™"" Agree(sk, P) := [sk] P.

5.4.5.6 Orchard Key Derivation

KDF®" " is 4 Key Derivation Function as specified in §4.1.6 ‘Key Derivation’ on p. 26.
It is instantiated using BLAKE2b-256 as follows:
KDF""(sharedSecret, ephemeralKey) := BLAKE2b-256(“Zcash_OrchardKDF”, kdfinput).

where:

kdfinput := ‘ LEBS20SP 54 (reprp(sharedSecret)) ‘ ephemeralKey ‘

BLAKE2b-256(p, z) is defined in §5.4.1.2 ‘BLAKE2 Hash Functions’ on p.74.

5.4.6 Ed25519

Ed25519 is a signature scheme as specified in §4.1.7 ‘Signature’ on p.26. It is used to instantiate JoinSplitSig as
described in §4.11 ‘Non-malleability (Sprout)’ on p.50.

Let PreCanopyExcludedPointEncodings : @(BY[?’Q]) ={
[0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00],
[0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 |,
[0x26, 0xe8, 0x95, 0x8f, 0xc2, 0xb2, 0x27, 0xb0, 0x45, 0xc3, 0xf4, 0x89, 0xf2, Oxef, 0x98, 0x£0, 0xd5, Oxdf, Oxac, 0x05, 0xd3, 0xc6, 0x33, 0x39, Oxb1, 0x38, 0x02, 0x88, 0x6d, 0x53, Oxfc, 0x05 |,
[0xc7,0x17, 0x6a, 0x70, 0x3d, 0x4d, 0xd8, 0x4f, Oxba, 0x3c, 0x0b, 0x76, 0x0d, 0x10, 0x67, 0x0f, 0x2a, 0x20, 0x53, 0xfa, 0x2c, 0x39, Oxcc, 0xc, Oxde, 0xc7, 0xfd, 0x77, 0x92, Oxac, 0x03, 0x7a ],
[0x13, 0xe8, 0x95, 0x8f, 0xc2, 0xb2, 0x27, 0xb0, 0x45, 0xc3, 0xf4, 0x89, 0x£2, Oxef, 0x98, 0x£0, 0xd5, 0xdf, Oxac, 0x05, 0xd3, 0xc6, 0x33, 0x39, 0xb1, 0x38, 0x02, 0x88, 0x6d, 0x53, 0xfc, 0x85],
[ 0xb4, 0x17, 0x6a, 0x70, 0x3d, 0x4d, 0xd8, 0x4f, Oxba, 0x3c, 0xOb, 0x76, 0x0d, 0x10, 0x67, 0x0f, 0x2a, 0x20, 0x53, 0xfa, 0x2c, 0x39, Oxcc, 0xc6, Oxde, 0xc7, 0xfd, 0x77, 0x92, Oxac, 0x03, Oxfa],
[Oxec, 0xff, 0xff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, 0x7f |,
[Oxed, Oxff, 0xff, Oxff, Oxff, Oxff, Oxff, OxEf, Oxff, Oxff, OxEf, Oxff, Oxff, OxEf, Oxff, Oxff, OxEf, Oxff, Oxff, OxEf, Oxff, Oxf, Oxff, Oxff, OxfE, Oxff, Oxff, Oxf s, Oxff, Oxff, Oxf s, OxTf ],
[Oxee, 0xff, 0xff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, 0x7f |,
[0xd9, 0xff, 0xff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff],
[Oxda, Ox£ff, Oxff, 0xff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, OxEf, Oxff, OxEf, Oxff, Oxff, Oxff, OxEf, Oxff, Oxff, OxEf, Ox£ff, OxEf, Oxff, OxEf, Oxff, OxEf, Oxff, OxEf, Oxff, Ox£ff, Oxff |

}.

Let p = 2%°° — 19.

Leta = —1.

Let d = —121665/121666 (mod p).

Let ¢ = 2°°% 4 27742317777372353535851937790883648493 (the order of the Ed25519 curve's prime-order subgroup).

Let B be the base point given in [BDLSY2012].
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Define the notation v/~ as in §2 ‘Notation’ on p.9.
Define I2LEOSP, LEOS2BSP, and LEBS2IP as in §5.1 ‘Integers, Bit Sequences, and Endianness’ on p.71

Define reprBytesgpss1o ¢ Ed25519 — BY* such that reprBytesggpss10((, ) = I2LEOSP 56 ((y mod p) +22°°.F), where
#=xzmod2?

Define abstBytesgyyssiq : BY*2 — Ed25519 U { L} such that abstBytesgyyss;q (P)is computed as follows:

let y* : B** be the first 255 bits of LEOS2BSP,56(P) and let # : B be the last bit.
let y : [, = LEBS2IPo55(yx) (mod p).

[ 1-4° : : . :
letz = dy _. (The denominator a — d-y° cannot be zero, since % is not square in I,,.)
a—d-y

ifz =1, return L.

if 2 mod 2 = # then return (z, y) else return (p — z, y).

Note: This definition of point decoding differs from that of [REC-8032, section 5.1.3, as corrected by the erratal.

In the latter there is an additional step “If x = 0, and x_0 = 1, decoding fails.’, which rejects the encodings {
[0x01, 0x00, 000, 0x00, 0x00, 000, 0x00, 0x00, 0x00, 0x00, 000, 0x00, 0x00, 000, 0x00, 0x00, 0x00, 0x00, 000, 0x00, 0x00, 000, 0x00, 0x00, 0x00, 0x00, 000, 0x00, 0x00, 0x00, 0x00, 080 ,
[Oxee, Oxft, OxEt, OxEf, Oxff, OxEf, Ox£f, Ox£f, OxEE, OxEf, 0xEt, OxEE, OxEt, OxEt, OxEf, Oxff, Ox£f, Ox£f, OXEf, OEf, 0xEf, OxEt, OxEt, OxEf, Oxft, OxEf, Ox£f, Ox£f, OEf, OxEf, OxEf, OxEt ],
[Oxec, Oxft, Oxft, OxE1, Oxft, Oxff, Ox£f, Ox£f, OXEE, OXEE, 0xEf, 0xEE, OxEt, OxEt, OxEf, Oxff, Oxff, Oxff, Ox£f, OXEL, OXEE, 0xEf, 0Ef, OxEE, OxEt, OxEf, Oxff, Oxff, Oxff, Ox£f, OxEf, Oxff ]

}.
In this specification, the first two of these are accepted as encodings of (0,1), and the third is accepted as an
encoding of (0, —1).

Ed25519 is defined as in [BDLSY2012], using SHA-512 as the internal hash function, with the additional requirements
below. A valid Ed25519 validating key is defined as a sequence of 32 bytes encoding a point on the Ed25519 curve.

The requirements on a signature (R, S) with validating key A on a message M are:
- S MUST represent an integer less than ¢.
- R and A MUST be encodings of points R and A respectively on the Ed25519 curve;
- [Pre-Canopy] R MUST NOT be in PreCanopyExcludedPointEncodings;
- [Pre-Canopy] The validation equation MUST be equivalent to [S] B = R + [c] A.

- [Canopy onward] The validation equation MUST be equivalent to [8] [S] B = [8] R + [8] [¢] A for single-
signature validation.

where ¢ is computed as the integer corresponding to SHA-512(R || A || M) as specified in [BDLSY2012].

If these requirements are not met or the validation equation does not hold, then the signature is considered invalid.

The encoding of an Ed25519 signature is:

256-bit R 256-bit §

where R and S are as defined in [BDLSY2012].

® Here we use the (z,y) naming of coordinates in [BDLSY2012], which is different from the (u, v) naming used for coordinates of ctEdwards
curves in §5.4.9.3 ‘Jubjub’ on p.100 and in § A.2 ‘Elliptic curve background’ on p.193.
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Notes:

- Itis not required that the integer encoding of the y-coordinate” of the points represented by R or A are less
than 2*°° — 19,

- ITtis not required that A ¢ PreCanopyExcludedPointEncodings.

- [Canopy onward] Appendix § B.3 ‘Ed25519 batch validation’ on p. 216 describes an optimization that MAY
be used to speed up validation of batches of Ed25519 signatures.

Non-normative note: The exclusion, before Canopy activation, of PreCanopyExcludedPointEncodings from R is
due to a quirk of version 1.0.15 of the libsodium library [libsodium] which was initially used to implement Ed25519
signature validation in zcashd. (The ED25519_COMPAT compile-time option was not set.) The intent was to exclude
points of order less than ¢; however, not all such points were covered.

[Canopy onward] Non-normative note: Because the post-Canopy rules for Ed25519 signatures are a relaxation
of the pre-Canopy rules, a full validator implementation that checkpoints on the Canopy activation block MAY
validate using the post-Canopy rules for the whole chain (and zcashd does so since zcashd v4.2.0). We retain the
pre-Canopy rules in the specification in order to accurately document the history of consensus changes.

5.4.7 RedDSA, RedJubjub, and RedPallas

RedDSA is a Schnorr-based signature scheme, optionally supporting key re-randomization as described in § 4.1.7.1
‘Signature with Re-Randomizable Keys’ on p.28. It also supports a Secret Key to Public Key Monomorphism as
described in §4.1.7.2 ‘Signature with Signing Key to Validating Key Monomorphism’ on p.29. It is based on a
scheme from [FKMSSS2016, section 3], with some ideas from EdDSA [BJLSY2015].

RedJubjub is a specialization of RedDSA to the Jubjub curve (§5.4.9.3 Jubjub’ on p.100), using the BLAKE2b-512 hash
function.

The spend authorization signature scheme SpendAuthSig>*"""8is instantiated by Red Jubjub, using parameters defined

in §5.4.7.1 ‘Spend Authorization Signature (Sapling and Orchard)’ on p.93.

The binding signature scheme BindingSig>*""" is instantiated by RedJubjub without key re-randomization, using

parameters defined in §5.4.7.2 ‘Binding Signature (Sapling and Orchard)’ on p.93.

RedPallas is a specialization of RedDSA to the Pallas curve defined in §5.4.9.6 ‘Pallas and Vesta’ on p.103, using the
BLAKE2b-512 hash function.

The spend authorization signature scheme SpendAuthSig®" s instantiated by RedPallas, using parameters defined
in §5.4.71 ‘Spend Authorization Signature (Sapling and Orchard)’ on p.93.
The binding signature scheme BindingSig®" " is instantiated by RedPallas without key re-randomization, using

parameters defined in § 5.4.7.2 ‘Binding Signature (Sapling and Orchard)’ on p.93.

Let I2LEBSP, I2LEOSP, LEOS2IP, and LEBS20SP be as defined in § 5.1 ‘Integers, Bit Sequences, and Endianness’
onp.71

We first describe the scheme RedDSA over a general represented group. Its parameters are:

- arepresented group G, which also defines a subgroup G" of order rg, a cofactor hg, a group operation +, an
additive identity Og, a bit-length /¢, a representation function reprg, and an abstraction function abstg, as
specified in §4.1.9 ‘Represented Group’ on p. 31;

- Pg, a generator of G;
- a bit-length ¢ : N such that 2% =128 > . and ¢ mod 8 = 0;

- a cryptographic hash function H : By _, gylf/8],
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Its associated types are defined as follows:

RedDSA.Message := By

RedDSA Signature :— BY|<<iiing(£/8) + ceiling(bitlength(rc) /5)]
RedDSA.Public := G

RedDSA.Private := I, .

RedDSA.Random :=F, .

Define H® : B — F, by:
H®(B) = LEOS2IP,, (H(B)) (mod rg)

Define RedDSA.GenPrivate : () &, RedDSA.Private as:

Return sk < F,..

Define RedDSA.DerivePublic : RedDSA.Private — RedDSA.Public by:
RedDSA.DerivePublic(sk) := [sk] Pg.

Define RedDSA.GenRandom : () = RedDSA.Random as:

Choose a byte sequence T uniformly at random on Byl (b +128)/8]

Return H®(T).

Define Oregpsa Random := 0 (mod 7g).

Define RedDSA.RandomizePrivate : RedDSA.Random x RedDSA.Private — RedDSA.Private by:
RedDSA.RandomizePrivate(a, sk) := sk 4+« (mod rg).

Define RedDSA.RandomizePublic : RedDSA.Random x RedDSA.Public — RedDSA.Public as:
RedDSA.RandomizePublic(a, vk) := vk + [a] Pg.

Define RedDSA.Sign : (sk : RedDSA.Private) x (M : RedDSA.Message) ~ RedDSA.Signature as:

Choose a byte sequence T uniformly at random on By((n+128)/8]
Let vk = LEBS20SP,_ (repr (RedDSA.DerivePublic(sk))).

Let r = H®(T || vk || M).

Let R = [r] Pg.

Let R = LEBS20SP,_(reprg (R)).

Let S = (r + H®(R || vk || M) - sk) mod 7g.

Let § = I2LEOSPytiength(re) (S)-

Return R || S.

Define RedDSA.Validate : (vk : RedDSA.Public) x (M : RedDSA.Message) x (¢ : RedDSA.Signature) — B as:
Let R be the first ceiling (¢ /8) bytes of o, and let S be the remaining ceiling (bitlength(rg)/8) bytes.
Let R = abstg (LEOS2BSP,_(R)), and let S = LEOS2IPg jengeh(s)(S)-

Let vk = LEBS20SP,_ (reprg (vk)).

Letc = HO(R| vk || M).

[NU5 onward] If reprg (R)# R, return 0.

Return 1if R # 1L and S < rg and [hg] (—[S] Pg + R + [c] vk) = Og, otherwise 0.
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Notes:
- The validation algorithm does not check that R is a point of order at least 7.
- After activation of [ZIP-216], validation returns 0 if R is a non-canonical compressed point encoding.
- The value R used as part of the input to H® MUST be exactly as encoded in the signature.

- Appendix § B.1 ‘RedDSA batch validation’ on p. 213 describes an optimization that MAY be used to speed up
validation of batches of RedDSA signatures.

Non-normative notes:

- The randomization used in RedDSA.RandomizePrivate and RedDSA.RandomizePublic may interact with other
uses of additive properties of keys for Schnorr-based signature schemes. In the Zcash protocol, such properties
are used for binding signatures but not at the same time as key randomization. They are also used in [ZIP-32]
when deriving child extended keys, but this does not result in any practical security weakness as long as the
security recommendations of ZIP 32 are followed. If RedDSA is reused in other protocols making use of these
additive properties, careful analysis of potential interactions is required.

- It is RECOMMENDED that, for deployments of RedDSA in other protocols than Zcash, the requirement for R
to be canonically encoded is always enforced (which was the original intent of the design).

The two abelian groups specified in §4.1.7.2 ‘Signature with Signing Key to Validating Key Monomorphism’ on
p. 29 are instantiated for RedDSA as follows:

- Og :=0 (mod rg)

- sk H sky :=sk; + sky (mod rg)
- Og =0g

- vk; @ vky 1= vky + vks.

As required, RedDSA . DerivePublic is a group monomorphism, since it is injective and:

RedDSA.DerivePublic(sk; FH sky) = [sk; 4 sky (mod rg)] Pg
= [sk{] Pg + [sks] Pg (since Pg has order r¢)
= RedDSA.DerivePublic(sk;) ¢ RedDSA.DerivePublic(sky).

A RedDSA validating key vk can be encoded as a bit sequence reprg (vk) of length ¢ bits (or as a corresponding byte
sequence vk by then applying LEBS20SP,,).

The scheme RedJubjub specializes RedDSA with:
- G := J as defined in §5.4.9.3 Jubjub’ on p.100;
- Uy =512
- H(z) := BLAKE2b-512(“Zcash_RedJubjubH", x) as defined in §5.4.1.2 ‘BLAKE?2 Hash Functions’ on p.74.

The scheme RedPallas specializes RedDSA with:
- G :=Pasdefined in §5.4.9.6 ‘Pallas and Vesta’ on p.103;
- by :=512;
- H(z) := BLAKE2b-512(“Zcash_RedPallasH”, z) as defined in §5.4.1.2 ‘BLAKE2 Hash Functions’ on p.74.

The generator P : G is left as an unspecified parameter, different between BindingSig>*™"8 SpendAuthSig>**"¢
BindingSig®" " and SpendAuthSig® "™,
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5.4.71 Spend Authorization Signature (Sapling and Orchard)
Let RedJubjub be as defined in § 5.4.7 ‘RedDSA, RedJubjub, and RedPallas’ on p.90.

i (r) =
Define G>*""8 .= FindGroupHash’  (“Zcash_G_",“").

Sapling .

The spend authorization signature scheme SpendAuthSig isinstantiated as RedJubjub with key re-randomization

and with generator Pg = Gepling
Let RedPallas be as defined in § 5.4.7 ‘RedDSA, RedJubjub, and RedPallas’ on p. 90.
Define GO" .= GroupHash” (“z. cash:0rchard”, “G”)

The spend authorization signature scheme SpendAuthSig®™"is instantiated as RedPallas with key re-randomization

4 hard
and with generator Pg = O

See §4.15 ‘Spend Authorization Signature (Sapling and Orchard)’ on p.55 for details on the use of this signature
scheme.

Security requirement: Each instantiation of SpendAuthSig must be a SURK-CMA-secure signature scheme with
re-randomizable keys as defined in §4.1.7.1 ‘Signature with Re-Randomizable Keys’ on p.28.

5.4.7.2 Binding Signature (Sapling and Orchard)

Let RedJubjub and RedPallas be as defined in § 5.4.7 ‘RedDSA, RedJubjub, and RedPallas’ on p. 90.

The Sapling binding signature scheme, BindingSig>**"" is instantiated as RedJubjub without key re-randomization,
using generator Pg = R>**"8 defined in § 5.4.8.3 ‘Homomorphic Pedersen commitments (Sapling and Orchard)
on p.95. See §4.13 ‘Balance and Binding Signature (Sapling)’ on p. 51 for details on the use of this signature
scheme.

The Orchard binding signature scheme, BindingSig®* ™™ is instantiated as RedPallas without key re-randomization,

using generator Pg = R2™“"“defined in § 5.4.8.3 ‘Homomorphic Pedersen commitments (Sapling and Orchard)’
on p.95. See §4.14 ‘Balance and Binding Signature (Orchard)’ on p.53 for details on the use of this signature
scheme.

Security requirement: Each instantiation of BindingSig must be a SUF-CMA-secure signature scheme with key
monomorphism as defined in §4.1.7.2 ‘Signature with Signing Key to Validating Key Monomorphism’ on p. 29.

A signature must prove knowledge of the discrete logarithm of the validating key with respect to the base R2PINE
Orchard
R :

5.4.8 Commitment schemes

5.4.8.1 Sprout Note Commitments

The note commitment scheme NoteCommit>"°"" specified in §4.1.8 ‘Commitment’ on p.29 is instantiated using
SHA-256 as follows:

rcm

NoteCommitS?°“(a_,., v, p) := SHA-256 (‘1 of1[1]o[o[ofo] 256-bitay [64-bitv] 256-bitp | 256-bit rcm \)

NoteCommit>™"°"". GenTrapdoor() generates the uniform distribution on NoteCommit>**". Trapdoor.

Note: The leading byte of the SHA-256 input is 0xBO.
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Security requirements:
- SHA256Compress must be collision-resistant .

- SHA256Compress must be a PRF when keyed by the bits corresponding to the position of rcm in the second
block of SHA-256 input, with input to the PRF in the remaining bits of the block and the chaining variable.

5.4.8.2 Windowed Pedersen commitments

§5.4.1.7 ‘Pedersen Hash Function’ on p.77 defines a Pedersen hash construction. We construct “windowed”
Pedersen commitments by reusing that construction, and adding a randomized point on the Jubjub curve (see
§5.4.9.3 Jubjub’ on p.100):

(r)*
WindowedPedersenCommit,.(s) := PedersenHashToPoint(“Zcash_PH”, s) + [r] FindGroupHash’ = (“Zcash_PH”, “r”)

See § A.3.5 ‘Windowed Pedersen Commitment’ on p.206 for rationale and efficient circuit implementation of this
function.

The note commitment scheme NoteCommit>*P"€ specified in §4.1.8 ‘Commitment’ on p. 29 is instantiated as follows
using WindowedPedersenCommit:

NoteCommit>P""&(gx, . pkiy, v) := WindowedPedersenCommit,cm ([1}6 [| I2LEBSPg4 (V) || g*q || pk*d)

rcm

NoteCommit>*"""& GenTrapdoor() generates the uniform distribution on F,,.

Security requirements:

- WindowedPedersenCommit, and hence NoteCommit>*P""€ must be computationally binding and at least com-
putationally hiding commitment schemes.

(They are in fact unconditionally hiding commitment schemes.)

Notes:

- MerkleCRH>*"""€i5 also defined in terms of PedersenHash ToPoint (see § 5.4.1.3 ‘MerkleCRH>*"""8 Hash Function’
on p.74). The prefix [1]° distinguishes the use of WindowedPedersenCommit in NoteCommit>*"""€ from the layer
prefix used in MerkleCRH>*"™_ That layer prefix is a 6-bit little-endian encoding of an integer in the range
{0... MerkleDepth®*"8 — 1}: because MerkleDepth>®P""€ < 64, it cannot collide with [1]°.

- The arguments to NoteCommit>**"™ are in a different order to their encodings in WindowedPedersenCommit.

There is no particularly good reason for this.

Theorem 5.4.5. Uncommitted®*""™ s not in the range of NoteCommit>*"'"&

Proof. Uncommitted®® ™™ is defined as I2LEBSP suins (1). By injectivity of I2LEBS P ssnine and definitions of Extract ),

Lherkde Merkle ]
Sapling

WindowedPedersenCommit, and NoteCommit>*"™8 |2LEBSP s (1) can be in the range of NoteCommit only if

ZMerk\e

there exist rem : NoteCommit>*™™ Trapdoor, D : BY® and M : B | such that U(WindowedPedersenCommit,,, (D, M))
= 1. The latter can only be the affine-ctEdwards u-coordinate of a point in J. We show that there are no points in J
with affine-ctEdwards u-coordinate 1. Suppose for a contradiction that (u,v) € J foru = 1and some v : F,_. By
writing the curve equation asv* = (1 — ay-u?)/(1 — dy-u?), and noting that 1 — dy-u> # 0 because d; is nonsquare, we
have v’ = (1 — ay)/(1 — dy). The right-hand-side is a nonsquare in I, (for the Jubjub curve parameters), so there
are no solutions for v (contradiction). O
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5.4.8.3 Homomorphic Pedersen commitments (Sapling and Orchard)

The windowed Pedersen commitments defined in the preceding section are highly efficient, but they do not support
the homomorphic property we need when instantiating ValueCommit.

For more details on the use of this property, see §4.13 ‘Balance and Binding Signature (Sapling)’ on p.51 and
§4.14 ‘Balance and Binding Signature (Orchard)’ on p.53.

Useful background is given in § 3.6 ‘Spend Transfers, Output Transfers, and their Descriptions’ on p.18 and §3.7
‘Action Transfers and their Descriptions’ on p.19.

In order to support this property, we also define homomorphic Pedersen commitments for Sapling:

. ()% (r)*
HomomorphicPedersenCommit>2P""&( D, v) := [v] FindGroupHash” (D, “v”)+ [rcv] FindGroupHash? (D, “r”)

rcv

ValueCommit>*"""8 GenTrapdoor() generates the uniform distribution on F,,.

See §A.3.6 ‘Homomorphic Pedersen Commitment’ on p. 206 for rationale and efficient circuit implementation of
this function.

We also define homomorphic Pedersen commitments for Orchard:

HomomorphicPedersenCommitr™(D, v) := [v] GroupHash" (D, “v")+ [rcv] GroupHash” (D, “r”)

rcv

ValueCommit®"™ GenTrapdoor() generates the uniform distribution on F,,.

Define:
. )=
V52Pine . _ FindGroupHash®  (“Zcash_cv”, “v”)

: ()*
R>P"e . FindGroupHash?  (“Zcash_cv”, “r”)

YOrehard.— GroupHash” (“z. cash:Orchard-cv”, “v”)

RO — GroupHash” (“z. cash:0rchard-cv”, “r”)

The commitment scheme ValueCommit>**" specified in §4.1.8 ‘Commitment’ on p.29 is instantiated as follows
using HomomorphicPedersenCommit®**"8 on the Jubjub curve:

Sapling

ValueCommit™(v) := HomomorphicPedersenCommit -F"é(“Zcash_cv”, v).

which is equivalent to:

ValueCommit;2P"8(y) := [v] V>*PI"8 4 [rcy] RE2PIE,

The commitment scheme ValueCommit®™ "™ specified in §4.1.8 ‘Commitment’ on p.29 is instantiated as follows

Orchard

using HomomorphicPedersenCommit on the Pallas curve:

Orchard
rcv

Orchard

ey (“z.cash:0rchard-cv”,v).

ValueCommit (v) := HomomorphicPedersenCommit

which is equivalent to:

ValueCommitQe"d(v) = [v] VOrrrd 1 [rev] RO,

rcv

Security requirements:

Sapling Orchard

- HomomorphicPedersenCommit and HomomorphicPedersenCommit must be computationally binding
and at least computationally hiding commitment schemes, for a given personalization input D.

Sapling Orchard

- ValueCommit and ValueCommit must be computationally binding and at least computationally hiding

commitment schemes.

(They are in fact unconditionally hiding commitment schemes.)
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Non-normative note: The output of HomomorphicPedersenCommit>*™™ may (with negligible probability for a
randomly chosen commitment trapdoor) be the zero point of the curve, Oj. This would be rejected by consensus
if it appeared as the cv field of a Spend description (§4.4 ‘Spend Descriptions’ on p.39) or Output description
(§4.5 ‘Output Descriptions’ on p.40). An implementation of HomomorphicPedersenCommit>**""8 MAY resample the
commitment trapdoor until the resulting commitment is not Oj.

5.4.8.4 Sinsemilla commitments

Let (" be as defined in §5.3 ‘Constants’ on p.72.
Let P and 7 be as defined in §5.4.9.6 ‘Pallas and Vesta’ on p.103.

Let Extractp be as defined in §5.4.9.7 ‘Coordinate Extractor for Pallas’ on p.104.

Let SinsemillaHashToPoint be as defined in §5.4.1.9 ‘Sinsemilla Hash Function’ on p.79.

We construct Sinsemilla commitments by reusing the Sinsemilla hash construction, and adding a randomized
point on the Pallas curve (see §5.4.9.6 ‘Pallas and Vesta’ on p.103):

M’ + [r] GroupHash® (D || “-x”,*"), if M’ # L

1, otherwise

where M’ = SinsemillaHashToPoint(D || “-M", M).

SinsemillaShortCommit,. (D, M) := Extracty (SinsemillaCommit,.(D, M)).

SinsemillaCommit,.(D, M) := {

See [Zcash-Orchard, section 3.7.1.2] for rationale and efficient circuit implementation of this function.

The probability of SinsemillaHashToPoint returning L is insignificant (and would yield a nontrivial discrete logarithm
relation). The binding property of SinsemillaCommit follows from collision resistance of SinsemillaHashToPoint
proven in Theorem 5.4.3 on p. 81, given that GroupHash® (D || “-r”, “") is independent of any of the bases used in
SinsemillaHashToPoint. The binding property of SinsemillaShortCommit can be proven by a similar argument to that

used for SinsemillaHash.

Provided that SinsemillaHashToPoint does not return _L, SinsemillaCommit is perfectly hiding because the output
distribution is perfectly indistinguishable from a random point in I, given that r is a uniformly random scalar on
[0, q). It follows that SinsemillaShortCommit is also perfectly hiding under the same condition, since hiding cannot
be affected by applying any fixed function to the output of SinsemillaCommit.

The note commitment scheme NoteCommit®™specified in § 4.1.8 ‘Commitment’ on p. 29 is instantiated as follows
using SinsemillaCommit:

NoteCommit Q<" (gxy, pkkgy, v, p, ) :=

SinsemiIIaCommitrcm(“z .cash:0rchard-NoteCommit”,
gxd || pkxq || I2LEBSPg4(v) || 2LEBSP jorchara (p) || I2LEBSP jorchara (V)
base

“base

Orchard

NoteCommit .GenTrapdoor() generates the uniform distribution on I, _.

Note: The arguments to NoteCommit™""

this is different to NoteCommit>2P'"8,

are the same order as their encodings in the input to SinsemillaCommit;

The commitment scheme Comn itin speciﬁed in §4.1.8 ‘Commitment’ on p. 29 is instantiated as follows usin
2 g
SinsemillaShortCommit:

Commit'}¥ (ak, nk) := SinsemillaShortCommit,;,, (“z.cash:0rchard-CommitIvk”,
I2LEBSPeOrchard (ak) || I2LEBSPf0rchard (nk))
base “base

ivk

Commit™.GenTrapdoor() generates the uniform distribution on F, _.
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Security requirements:

- SinsemillaCommit and SinsemillaShortCommit, and hence NoteCommit®"* and Commit*, must be computa-
tionally binding and at least computationally hiding commitment schemes. They are in fact unconditionally

hiding commitment schemes provided that no L output is observed.

Theorem 5.4.6. Uncommitted®™™ is not in the range of NoteCommit°™"",

Proof. Uncommitted®"*is defined as 2. By the definitions of Extracts, SinsemillaShortCommit, and NoteCommit
2 can be in the range of NoteCommit®™* only if there exist rem ¢ NoteCommit®™™ Trapdoor, D : BY™ and M : B!
such that Extract (SinsemillaCommit, ., (D, M)) = 2. Extractp (SinsemillaCommit,,, (D, M)) can only be L or 0 or the
affine-short-Weierstrass x-coordinate of a point in P. But 0 # 2 (mod ¢p), and there are no points in P with
affine-short-Weierstrass x-coordinate 2 (mod gp), since 23 4 bp = 13 is not square in . O

Orchard

Non-normative notes:

. Although the given theorem is correct for the definition of NoteCommit®*" in this specification, the imple-

mentation in the Action circuit constrains the result to an unspecified set of values when an input results in
an exceptional case for any incomplete addition. If this occurs then it yields a nontrivial discrete logarithm
relation for the Pallas curve, as proven in Theorem 5.4.4 on p. 82. We can therefore assume that it is infeasible
to find such inputs with nonnegligible probability.

- There are also no points in P with affine-short-Weierstrass x-coordinate 0 (mod ¢p), as shown in a note
at §5.4.9.7 ‘Coordinate Extractor for Pallas’ on p.104. We do not choose Uncommitted® ™ = ( because
MerkleCRH®""" returns 0 in exceptional cases. Although the hash values of leaf nodes are separated from

the hash values at other layers by the layer input to MerkleCRH®™"™ it would arguably be confusing to rely on
that.

5.4.9 Represented Groups and Pairings

5.4.9.1 BN-254

The represented pairing BN-254 is defined in this section.

Let g := 21888242871839275222246405745257275088696311157297823662689037894645226208583.
Let rg := 21888242871839275222246405745257275088548364400416034343698204186575808495617.
Let bg := 3.

(gg and rg are prime.)

Let Gﬁ” be the group (of order ) of rational points on a Barreto-Naehrig ((BN2005]) curve Eg, over F, with
equation y* = z* + bg. This curve has embedding degree 12 with respect to 7.

Let Gg) be the subgroup of order ¢ in the sextic twist Eg, of Eg, over ]Fq@z with equation P =2+ % where
ECF 2.
96

We represent elements of [, 2 as polynomials a, - t + ag ¢ F,_[t], modulo the irreducible polynomial #* + 1; in this
representation, ¢ is given by ¢ + 9.

Let Gg’:) be the subgroup of r¢™ roots of unity in ]F;Gm, with multiplicative identity 1¢.

Let ég be the optimal ate pairing (see [Vercauter2009] and [AKLGL2010, section 2]) of type Ggr) X Gg) — GS}").

Fori: {1..2}, let Og, be the point at infinity (which is the additive identity) in G andletG"* := G\ {Og,}.
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Let Pg, : GI* := (1,2).

Let Pg, : GY)* := (11559732032086387107991004021392285783925812861821192530917403151452391805634 - £ +
10857046999023057135944570762232829481370756359578518086990519993285655852781,
4082367875863433681332203403145435568316851327593401208105741076214120093531 - ¢ +
8495653923123431417604973247489272438418190587263600148770280649306958101930).

Pg, and Pg, are generators of G\ and G’ respectively.

Define I2BEBSP : (£ : N) x {0..2°~1} — B as in §5.1 ‘Integers, Bit Sequences, and Endianness’ on p.71

For a point P : G(lr)* = (zp,yp):
- The field elements zp and yp : F, are represented as integers z and y : {0..¢—1}.
- Let § = y mod 2.
. Pis encoded as ]0|0|o|0|o|o| 1| 1-bit § | 256-bit 12BEBSPass () \ .

For a point P : Gg)* = (zp,yp):

- Define FE2IP : I, [t]/(t* +1) = {0..¢q¢°—1} such that FE2IP (a1 - T+ Gy 0) = Gy 1 - G+ Gy -
- Letz = FE2IP(xzp), y = FE2IP(yp), and 3y = FE2IP(—yp).

1, ify >4
- Lety = ny y.
0, otherwise.

. Pisencoded as ]0|0|o|0| 1|o| 1| 1-bit § | 512-bit 2BEBSPs, ()

Non-normative notes:

- Only the rg-order subgroups (Gg)T are used in the protocol, not their containing groups G, r. Points in G(;)*

are always checked to be of order rg when decoding from external representation. (The group of rational
points G, on Eg /I, is of order rg so no subgroup checks are needed in that case, and elements of G(T)
never represented externally.) The (r) superscripts on (Gg 5 are used for consistency with notation elsewhere
in this specification.

- The points at infinity Og , never occur in proofs and have no defined encodings in this protocol.

- Arational point P # Og, on the curve Eg, can be verified to be of order 7, and therefore in G({)*, by checking
that re - P = OG2.

- The use of big-endian order by I2BEBSP is different from the encoding of most other integers in this pro-
tocol. The encodings for (GY); are consistent with the definition of EC20SP for compressed curve points
in [IEEE2004, section 5.5.6.2]. The LSB compressed form (i.e. EC20SP-XL) is used for points in GY)*, and the
SORT compressed form (i.e. EC20SP-XS) for points in G$*

- Testing y > 3/ for the compression of Gg)* points is equivalent to testing whether (a,, 1,a, ) > (a_, 1,a_,0)
in lexicographic order.

- Algorithms for decompressing points from the above encodings are given in [[EEE2000, Appendix A.12.8] for
G{”* and [IEEE2004, Appendix A.12.11] for GJ’*

When computing square roots in F, orF, 2in order to decompress a point encoding, the implementation MUST
NOT assume that the square root ex1sts or “that the encoding represents a point on the curve.
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5.4.9.2 BLS12-381

The represented pairing BLS12-381 is defined in this section. Parameters are taken from [Bowe2017].

Let gg := 4002409555221667393417789825735904156556882819939007885332058136124031650490837864442687629129015664037894272559787.
Let rg := 52435875175126190479447740508185965837690552500527637822603658699938581184513.

Let ug := —15132376222941642752.

Let bg := 4.

(gs and rg are prime.)

Let Sgr) be the subgroup of order rg of the group of rational points on a Barreto-Lynn-Scott ((BLS2002]) curve Eg
over I, with equation y* = 2° + bg. This curve has embedding degree 12 with respect to rs.

Let S(;) be the subgroup of order rs in the sextic twist Eg, of Eg overF, » with equation y> = 2 + 4(i + 1), where
i:F 2. ”
ds

We represent elements of I, > as polynomials a; - t + ao : F, [t], modulo the irreducible polynomial t* + 1; in this

representation, i is given by ¢.

Let Sg,f) be the subgroup of 74" roots of unity in F;n, with multiplicative identity 1g.

Let ¢ be the optimal ate pairing of type S x §J) — s¥).

Fori: {1..2}, let O be the point at infinity in s and let S7* := s \ {Os,}.

Let P : S{" =
(3685416753713387016781088315183077757961620795782546409894578378688607592378376318836054947676345821548104185464507,

1339506544944476473020471379941921221584933875938349620426543736416511423956333506472724655353366534992391756441569).

Let Py 1 SY" =
(3059144344244213709971259814753 7816369864 703254 766475386393732062916333247680384324335095631 0434701 7837885763365758 - ¢ +
3527010695874666181871391160110601448900299527927752402199086442397937857357150268733476003438651 75952 761926303160,

927553665492332455747201965776037880757740193453592970025027978793976877002675564980949289727957565575433344219582 - £ +
1985150602287291935568054521177171638300868978215655730859378665066344726373823718423869104263333984641494340347905).

Ps, and Pg_ are generators of S and S¥) respectively.
Define I2BEBSP : (£ : N) x {0..2°—1} — B as in §5.1 Integers, Bit Sequences, and Endianness’ on p.71.
Fora point P : S* = (ap, yp):

- The field elements zp and yp : F,_are represented as integers x and y : {0.. g5 —1}.

1, ify >qs —
Clety=1{ Yo dTY
0, otherwise.

: Pisencodedasllkql-bng| 381-bit 12BEBSP., () \‘
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Fora point P : S* = (ap, yp):
- Define FE2IPP : T, [t]/(t* + 1) — {0..qs—1}*) such that FE2IPP(ay, 1 -  + ay 0) = [ 1+ G o)-
- Let z = FE2IPP(zp), y = FE2IPP(yp), and i = FE2IPP(—yp).

. ! . .
Letj— 1, ify > y. lexicographically
0, otherwise.

. Pisencoded as ]1|0| 1-bitg| 381-bit 2BEBSPag, (z,) | 384-bit 2BEBSPag, (z5) \

Non-normative notes:

- Only the rg-order subgroups S%,T are used in the protocol, not their containing groups S, , 7. Points in SY);
are always checked to be of order rg when decoding from external representation. (Elements of SE,’:) are
never represented externally.) The () superscripts on SY)ZT are used for consistency with notation elsewhere
in this specification.

- The points at infinity Og, , never occur in proofs and have no defined encodings in this protocol.

- In contrast to the corresponding BN-254 curve, Eg over F, is not a prime-order curve.

- Arational point P # Og, on the curve Eg fori € {1,2} can be verified to be of order rg, and therefore in SZ(.T)*,
by checking that rg - P = Os.

- The use of big-endian order by I2BEBSP is different from the encoding of most other integers in this protocol.

- The encodings for S(f;); are specific to Zcash.

- Algorithms for decompressing points from the encodings of Sgr); are defined analogously to those for GY); in
§5.4.9.1 ‘BN-254" on p. 97, taking into account that the SORT compressed form (not the LSB compressed form)

is used for S{7*,

When computing square roots in F,_ or F2in order to decompress a point encoding, the implementation MUST
NOT assume that the square root exists, or that the encoding represents a point on the curve.

5.4.9.3 Jubjub

“You boil it in sawdust: you salt it in glue:
You condense it with locusts and tape:
Still keeping one principal object in view—
To preserve its symmetrical shape.”
— Lewis Carroll, “The Hunting of the Snark” [Carroll1876]

Sapling uses an elliptic curve, Jubjub, designed to be efficiently implementable in zk-SNARK circuits. The represented
group J of points on this curve is defined in this section.

A complete twisted Edwards elliptic curve, as defined in [BL2017, section 4.3.4], is an elliptic curve F over a non-
binary field I, parameterized by distinct a,d : F, \ {0} such that a is square and d is nonsquare, with equation
2, 2 2
E:au +v =1+du
curves and coordinates.
Let ¢y := rg, as defined in §5.4.9.2 ‘BLS12-381" on p. 99.

Let ry := 6554484396890773809930967563523245729705921265872317281365359162392183254199.

-v?. We use the abbreviation “ctEdwards” to refer to complete twisted Edwards elliptic

(¢y and ry are prime.)

Let hJ = 8.
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Letaj := —1.
Let dy := —10240/10241 (mod gy).

Let J be the group of points (u,v) on a ctEdwards curve Ej over F, with equation ay-u® +v* =1+ dy-u®-v*. The
zero point with coordinates (0, 1) is denoted Oj. J has order hj-rj.

Let /; := 256.
Define the notation v/« as in § 2 ‘Notation’ on p.9.

Define I2LEBSP : (¢ : N) x {0..2°~1} — B as in § 5.1 Integers, Bit Sequences, and Endianness’ on p.71, and
similarly for LEBS2IP : (¢ : N) x BY — {0..2°~1}.

Define repr; : J — B! such that repry((u,v)) = I2LEBSPy56 (v mod gy) + 2255~12), where @ = u mod 2.
Define abst; : B! — JU {1} such that abst;(P«)is computed as follows:

let v« : B*! be the first 255 bits of Px and let @ : B be the last bit.
if LEBS2IPy55(vx) > gy then return L, otherwise let v : I, = LEBS2IPy55(vx) (mod gy).

? 11— . 2 . ay . .
letu = + . (The denominator aj — dj-v° cannot be zero, since d—J is not square in I, .)
ap—dg-v J

ifu= 1, return L.

if w mod 2 = @ then return (u, v) else return (g3 — u, v).

Note: In earlier versions of this specification, abst; was defined as the left inverse of repr; such that if S is not in
the range of repr;, then abst;(.S) = L. This differs from the specification above:

- Previously, abst; (I2LEBSP256 (2°°° + 1)) and abst; (I2LEBSP256 (2%°° 4 q; — 1)) were defined as L.

- In the current specification, abstJ(I2LEBSP256(2255 + 1)) = abst; (I2LEBSP,54(1)) = (0,1) = Oy, and also
abstJ<I2LEBSP256 (2255 + g5 — 1)) = abst; (12LEBSP,s(g; — 1)) = (0, —1).

Define J™ as the order-r; subgroup of J. Note that this includes Oj. For the set of points of order r; (which excludes
0y), we write J©*,

Define Jg) = {repry(P) : B | P J}.

Non-normative notes:

- The ctEdwards compressed encoding used here is consistent with that used in EdDSA [BJLSY2015] for
validating keys and the R element of a signature.

- [BJLSY2015, “Encoding and parsing curve points”] gives algorithms for decompressing points from the encod-
ing of J.

- [BJLSY2015, “Encoding and parsing integers”] describes several possibilities for parsing of integers; the speci-
fication of abst; above requires “strict” parsing.
When computing square roots in F, in order to decompress a point encoding, the implementation MUST NOT

assume that the square root exists, or that the encoding represents a point on the curve.

Note that algorithms elsewhere in this specification that use Jubjub may impose other conditions on points, for
example that they have order at least rj.
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5.4.9.4 Coordinate Extractor for Jubjub

Let U((u,v)) = uandlet V((u,v)) =v.

Sapling

Define Extract. o) : J© — Blfere] by

J(T)
EXtraCtJ(r) (P) = I2LEBSP£Sap\ing ('U/(P))

Merkle

Facts: The point (0,1) = Oy, and the point (0, —1) has order 2 in J. I is of odd-prime order.
Lemma5.4.7. LetP = (u,v) € J". Then (u, —v) ¢ J©.

Proof. If P = Oy then (u, —v) = (0, —1) ¢ J"). Else, P is of odd-prime order. Note that v # 0. (If v = O then a - u? = 1,
and so applying the doubling formula gives [2] P = (0,—1), then [4] P = (0,1) = Oj; contradiction since then
P would not be of odd-prime order.) Therefore, —v # v. Now suppose (u, —v) = @Q is a point in J¥. Then by
applying the doubling formula we have [2] Q = —[2] P. But also [2] (—P) = —[2] P. Therefore either Q = —P (then

V(Q)= V(—P); contradiction since —v # v), or doubling is not injective on I (contradiction since J" is of odd
order [KvE2013)]). O

Theorem 5.4.8. 1 is injective on J".

Proof. By writing the curve equation as v> = (1 — a-u*)/(1 — d-u?), and noting that the potentially exceptional case
1 — d-u® = 0 does not occur for a ctEdwards curve, we see that for a given u there can be at most two possible
solutions for v, and that if there are two solutions they can be written as v and —v. In that case by the Lemma, at

most one of (u,v) and (u, —v) isin J ™) Therefore, U is injective on points in J ®, O

Since I12LEBSP Jsawing 1S injective, it follows that ExtractJ@) is injective on J @,
Merkle

5.4.9.5 Group Hash into Jubjub

Let URS be the MPC randomness beacon defined in § 5.9 ‘Randomness Beacon’ on p.117.
Let BLAKE2s-256 be as defined in §5.4.1.2 ‘BLAKE2 Hash Functions’ on p.74.
Let LEOS2IP be as defined in § 5.1 Integers, Bit Sequences, and Endianness’ on p.71.

Let J*, J®)* and abst; be as defined in §5.4.9.3 ‘Jubjub’ on p.100.
()= ()%
Let GroupHash”  .Input := BY® x BY[ and let GroupHash’ .URSType := B[54,

(The input element with type BY!®
group hash for different purposes.)

is intended to act as a “personalization” parameter to distinguish uses of the

Let D : BY® be an 8-byte domain separator, and let M : B be the hash input.

()=
The hash GroupHashﬂRS (D,M): 30"y {L} is calculated as follows:

let H = BLAKE2s-256(D, URS || M)
let P = abst;(LEOS2BSPy54(H))

if P = 1 thenreturn L

let Q@ =[h;] P

if Q = Oy then return L, else return Q.
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Notes:

- The use of GroupHashURS for Dlver5|fyHashSapllng and to generate independent bases needs a random oracle
(for inputs on which GroupHashURS does not return L); here we show that it is sufficient to employ a simpler
random oracle instantiated by BLAKE2s-256 in the security analysis.

H : B (1,05, (0,-1)} abst; (LEOS2BSPy56(H)) : J is injective, and both it and its inverse are efficiently
computable.

P:lgioy[hs] Pl (% is exactly hy-to-1, and both it and its inverse relation are efficiently computable.

It follows that when (D : BY® a7 BYM) s BLAKE2s 256(D, URS || M) : BY®?) is modelled as a random
oracle, (D : BY®) A c BN GroupHashURS (D, M) : J”* also acts as a random oracle.

- The BLAKE2s-256 chaining variable after processing URS may be precomputed.

Define first : (BY — TU{Ll}) — T U{.L} sothatfirst(f) = f(i) where i is the least integer in BY such that f(i) # L,
or L if no such i exists.

Cr Cr
Define FindGroupHash’ (D, M) := first(i : BY s GroupHashi;gs (D, M || [i]) : 3% U {L}).

—256

@+
Note: For random input, FindGroupHash’ ~ returns L with probability approximately 2~%°°. In the Zcash protocol,

()
most uses of FindGroupHash”  are for constants and do not return L; the only use that could potentially return L
is in the computation of a default diversified payment address in §4.2.2 ‘Sapling Key Components’ on p. 35.

5.4.9.6 Pallas and Vesta

Orchard uses two elliptic curves, Pallas and Vesta, that form a cycle: the base field of each is the scalar field of the
other. In Orchard, we use Vesta for the proof system (playing a similar réle to BLS12-381 in Sapling), and Pallas for
the application circuit (similar to Jubjub in Sapling). Both curves are designed to be efficiently implementable in
zk-SNARK circuits, although we only use Pallas in that way for Orchard.

The represented groups P and V of points on Pallas and Vesta respectively are defined in this section.

A short Weierstrass elliptic curve over a field F, of characteristic greater than 3, as defined for example in
[H15112010, Definition 2.3.1], is an elliptic curve E over F,, parameterized by a, b : F, such that 4 - a® +27-b° # 0, with

equation E : 3° = 2° + a - 2 + b. The curve has a distinguished zero point O, also called the “point at infinity”. For
Pallas and Vesta we have a = 0 and so we will omit that term below.

Let gp := 0x40000000000000000000000000000000224698£c094c£91b992d30ed00000001.

Let gy := 0x40000000000000000000000000000000224698£c0994a8dd8c46eb2100000001.

(gp and ¢y are prime.)

Let rp := gy and ry := ¢p.

Letbp = by :=5

Let P be the group of points (z,y) with zero point Op, on a short Weierstrass curve Ep over F,_ with equation
y® = 2° + bp. P has order rp.

Let V be the group of points (z,y) with zero point Oy, on a short Weierstrass curve Ey over I, with equation
y? = 2® + by. V has order r+.

For the set of points on Pallas of order rp (which excludes Op), we write P*.
For the set of points on Vesta of order ry (which excludes Oy), we write V*.
Let lp = by := 256.

Define the notation v/« as in § 2 ‘Notation’ on p.9.

103


https://zips.z.cash/protocol/nu5.pdf#pallasandvesta

Define I2LEBSP : (¢ : N) x {0..2°~1} — B asin § 5.1 Integers, Bit Sequences, and Endianness’ on p.71, and
similarly for LEBS2IP : (¢: N) x BY) — {0..2°~1}.

Let G be either Por V.
Define reprg; : G — Bl“! such that
reprg (Og ) = I2LEBSP,54(0)
repre ((z,y)) = I2LEBSP,56 (2 mod gg) + 2°°°-), where § = y mod 2.

Define abstg : B & G U {L} such that abstg (P*)is computed as follows:

let 2 : B° be the first 255 bits of Px and let 7 : B be the last bit.
if LEBS2IPy55(2%) > qg then return L, otherwise let z : F, | = LEBS2IPy55 () (mod gg).

lety = /2 + bg .

ifx=0and § =0, return Og.
ify = L, return L.

if y mod 2 = ¢ then return (z, y) else return (z, qg — y).

Notes:

- There is no solution to 0 = z* + 5 in either I, or[F, ,and soy cannot be zero. Therefore there is only one valid
representation of each point on Pallas and of each point on Vesta; in particular abstp(nc) = L and absty(nc) = L
for nc = 12LEBSP,54 (2255). This differs from the corresponding case of abstj(nc)for Jubjub, for example.

- When computing square roots in I, or I, in order to decompress a point encoding, the implementation
MUST NOT assume that the square root exists, or that the encoding represents a point on the curve.

5.4.9.7 Coordinate Extractor for Pallas

Let P, Op, ¢p, and bp be as defined in §5.4.9.6 ‘Pallas and Vesta’ on p.103.
Define X : P — F,_and Y : P — F,_ such that:

Define Extractp : P — {0..gp — 1} such that
Extractp(P) = Z(P) mod gp.

We also define Extracty : PU{ L} — {0..¢p — 1} U {L} such that
Extractp (J_) =1
Extractg (P : P) = Extractp(P).

Note: There is no solution to 4> = 0° + 5 in IF,.. and so Extractp(P) can only be 0 when P = Op.
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5.4.9.8 Group Hash into Pallas and Vesta

Orchard uses the “simplified SWU" algorithm for random-oracle hashing to elliptic curves with j-invariant 0,
consistent with [ID-hashtocurve, section 6.6.3], based on a method by Riad Wahby and Dan Boneh [WB2019]. It is
adapted from work of Eric Brier, Jean-Sébastien Coron, Thomas Icart, David Madore, Hugues Randriam, and Mehdi
Tibouchi in [BCIMRT2010]; Andrew Shallue and Christiaan van de Woestijne in [SvdW2006]; and Maciej Ulas in
[Ulas2007].

Let P and V be the represented groups of points on the Pallas curve and the Vesta curve respectively, as defined in
§5.4.9.6 ‘Pallas and Vesta’ on p.103. Let G be either IP or V according to the desired target curve.

Also define Og, G*, qg, and abstg by replacing G with P or V, using definitions from §5.4.9.6 ‘Pallas and Vesta’ on
p-103. Let curveNameg be “pallas” when G = P, or “vesta” when G = V.

The algorithm makes use of a curve Ei., p, called iso-Pallas, that is isogenousﬁ to Ep; or Eigy, called iso-Vesta, that is
isogenous to Ey.

Let a;sop 1= 0x18354a2eb0ea8c9c49be2d72568370742b74134581a27a59f92bb4b0b657a014b.
Let a;oy := 0x267£9b2€e592271281639c4d96£787739673928c7d01b212c515ad7242¢eaabbl.

Let biso—IP = biso—V = 1265.

Let iso-P be the group of points (, y) with zero point O, p, on a short Weierstrass curve E,, p over F, with equation
v =2+ Uisop * T + bisgp- Since Eig, p is isogenous to Fp, it has the same order 7, p = rp = gy.

Let iso-V be the group of points (z, y) with zero point Oy, on a short Weierstrass curve Eiy,y over F, with equation
v =2 + oy - T + bigyy. Since By is isogenous to Evy, it has the same order ri vy = v = ¢p.

LetC": F, " = |
0x0e38e38e38e38e38e38e38e38e38e38e4081775473d8375b775£6034aaaaaaab,
0x3509afd51872d88e267c7ffablcf412a0f93b82ee4b994958c£863b02814£b76,
0x17329b9ec525375398c7d7ac3d98£d13380af066cfeb6d690ebb4faef37eadf?,
0x1c71c71c71c71c71c71c71c71c71c71c8102eea8e7b06ebbeebec069556555580,
0x1d572e7ddc099cf£5a607fcce0494a799c434ac1c96b6980c47£2ab668bcd71f,
0x325669becaecdbd11d13bf2a7£22b105b4abf9fb9alfc81c2aa3afleaebb6604,
0x1a12f684bda12£684bda12f684bdal2f7642b01ad461bad25ad985b5e38e38e4,
0x12a84d7ea8c396c47133e3££d28e7a09507c9dc17725ccadac67c31d8140a7dbb,
0x3fb98£f0d2ddcadd303216cceldb9ff11765e924£745937802e2be87d225b234,
0x025ed097b425ed097b425ed097b425ed0ac03e8e134eb3e493e53ab371c71c4ft,
0x0c02cbbccale6b7£0790bfb3506defb65941a3a4a97aalb35a28279b1d1b42ae,
0x17033d3c60c68173573b3d7£7d681310d976bbfabbc5661d4d90ab820b12320a,
0x40000000000000000000000000000000224698£c094c£91b992d30ecfffffdeb

.

LetC” : F, .=
0x38e33e38e38¢38¢38e38e38e38¢38390205dd51c£a0961a43cd42c800000001
0x1d935247b4473d17acect 10£5£7c09a2216b8861ec72bd5d8bI5CcBaat703becs,
0x18760c7£7a9ad20ded7ee4adcdf78£8£d59d03d23b39cb11acac67bbeb586a3d,
0x31c71c71c71cT1cT1c71cTicT1cT1cT1e1c521a795ac8356£539a6£0000002b,
0x0a2de485568125451454798a5b5c56b2a3ad678129b604d3b72841 Teaf21a2e9,
0x14735171ee5427780c621de8b91c242a30cd6d53d£49d235£ 169¢ 187d2533465,
0x12£684bda12684bdal2£684bda12£685601£4709a8adcb36bef 1642aaaaaaab,
0x2ec9a923da239e8bd6767887afbe04d121d910aefb03b31d8bee58e5:b81de63,
0x19b0d87e1662578366d1466e9de 10e6497a3cabc24e9eab34986913ab4443034,
0x1ed097b425ed097b425ed097b425ed098bC32d36£b21a6a38£64842c55555533,
0x2£44d6c801c1b8bE9e7eb64£890a820c06a767bf c35b5bacs8dfecce86b2745e,
0x3d59f455cafc7668252659ba2b546¢7e926847b9ddd76a1d43d449776£99d2f,
0x40000000000000000000000000000000224698£ c0994a8dd8c46eb20£ ££ £ fde5

°For a brief introduction to isogenies between elliptic curves, see [Cook2019]. For deeper mathematical background, see the notes for
lectures 4, 5, and 6 at [Sutherland2021].
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Let iso_map® : iso-G — G be the isogeny map given by:

. G
iso_map” (Oiog) = Og
iso_map” ((z,y)) = (C?-x3+C§-x2+C§~z+C§" (C%"~w“+c§”<x2+05’-x+0ﬁ,)-y>
— ) 5 g - = .
.’L’2+C§; ~:L‘+Cgr 2*+CF '1L‘2+C?2'1L'+Ci§

Let BLAKE2b-512 : BY16) » vl _, pvl“/8) e a5 defined in §5.4.1.2 ‘BLAKE2 Hash Functions’ on p.74.

Define the notationv/+ as in §2 ‘Notation’ on p.9.
Let BEOS2IP be as defined in § 5.1 Integers, Bit Sequences, and Endianness’ on p.71.

p (2
Define hash_to_fieldy\ip. g1 akEap (MSE © BN DST ¢ Byl{0- 2553y IE‘(IG[Q] as follows:

let DST' = DST || [length(DST) |

let msg’ = [0x00]"** || msg || [0,128] ]| [0] || DST’

let by = BLAKE2b-512([0x00]'®, msg’)

let b; = BLAKE2b-512([0x00]"®, b || [ 1] || DST')

let by = BLAKE2b-512([0x00]"%, (b @ by) || [2] || DST')

return [ BEOS2IP5,5(b;) (mod qg), BEOS2IP55(by) (mod gg) |-

Non-normative notes:

- This algorithm is intended to correspond to hash_to_field(msg, 2) defined in [ID-hashtocurve, section 5.3],
using as its expand_message parameter the function XMD:BLAKE2b corresponding to expand_message_xmd
defined in [ID-hashtocurve, section 5.4.1], and with domain separation tag DST. In expand_message_xmd, H is
instantiated as BLAKE2b-512 with b_in_bytes = 64 and r_in_bytes = 128, and we specialize to len_in_bytes = 128
since that is the only case we need. In the event of any discrepancy or change to the Internet Draft, the
definition here takes precedence.

- The “security level” k in the Internet Draft is taken to be 256. Although this is greater than the conjectured
126-bit security of the Pallas curve against generic (e.g. Pollard rho) attacks [Hopwood2020], this design choice
is consistent with other instances of extracting a uniformly distributed field element from a hash output in
the Orchard protocol, such as ToScalar®™™ and ToBase?™™ defined in § 4.2.3 ‘Orchard Key Components’
on p.37, and H® defined in §5.4.7 ‘RedDSA, RedJubjub, and RedPallas’ on p.90.

- Unlike other uses of BLAKE2b in Zcash, zero bytes are used for the BLAKE2b personalization, in order to
follow the Internet Draft which encodes DST in the hash inputs instead.

- The conversion from bytes to field elements uses big-endian order, again in order to follow the Internet Draft.

- A minor optimization is to cache the state of the BLAKE2b-512 instance used to compute b, after processing
[0x00]"®, since this state does not depend on the message.

Let Ag be any fixed nonsquare in F, . Define sqrt_ratiog (num,div) : F,  x Fy— F,_ x B as follows:
G ac G

sqrt_ratiog (num, div) — (W, | 1), ifnum/fjiv is square in F,_
9 (v/Ag - num/div’, 0), otherwise.
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Non-normative notes:
- An arbitrary square root may be chosen in either case of the definition. The result is never L.

- The choice of the nonsquare Ag is also arbitrary and will not affect the output of map_to_curve_simple_swu'*"®

defined below.

+ The computation of sqrt_ratio; can be optimized as described in [Zcash-halo2, section 3.2.1 Fields].

Define Z, ¢ := —13 (mod qg). (This value is suitable for both iso-Pallas and iso-Vesta.)

Precompute 0, ¢ 1= N Ziso.c/ A » Which is not J_.i

By definition we have that Eg is the short Weierstrass curve with equation y® = 2° + bg, and E,, ¢ is the short
Weierstrass curve with equation y2 =2+ Giso-G * T + bisoiz-
Define map_to_curve_simple_swu™™® (v F,.) — iso-G as follows:
let Zuu = Zigo ¢ - u?
let ta = Zuu® + Zuu
let x1ym = bisog - (ta + 1)
let x4y = Qi * (ta = 0) ? Zigo : —ta)
compute x5, and x5,
let U = (x12ym + tisoc  Xitiv) * XLoum + bisoc * Xely
let x2,,ym = Zuu - x1
let (y1, is_gx1_square) = sqrt_ratio]FqG(U, Xy

num num

lety2 =60 - Zuu-u -yl

let X,um = is_gx1_square ? X1,um : X2num
lety’ = is_gx1_square ? yl :y2

lety = (umod 2 =y mod 2) ?y": —y'

return the Fi,, ¢ point with affine-short-Weierstrass coordinates (X,um/Xdiv, ¥)-

Let GroupHash® .Input := BYI") 5 BYN The first input element acts as a domain separator to distinguish uses of the
group hash for different purposes; the second input element is the message.

This hash-to-curve algorithm does not have a URS, i.e. GroupHash®.URS Type := ().
The hash GroupHash® (D : BN A ]B%Y[N]) : G is calculated as follows:

“_n

let DST =D curveNameg
fail if length(DST) > 255 -
let [, u; ] = hash_to_fieldy o o/ s o (M, DST)

“_XMD:BLAKE2b_SSWU_RO_”

letQ; = map_to_curve_simple_swuiSO‘G(ui) fori e {0,1}

return iso_map® (Qy + Q).

"Both Ziso-c and Ag are nonsquare, and so their ratio is square in F, . An arbitrary square root may be chosen.
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Non-normative notes:

- The length of D is in practice limited to 233 — length(curveNameg) bytes due to the restriction of DST to at
most 255 bytes. This limit is not exceeded by any use of GroupHash” or GroupHash" in this specification.

. GroupHash” and GroupHash" are intended to be instantiations of hash_to_curve using “Simplified SWU for
AB = 0"described in [ID-hashtocurve, section 6.6.3]. In the event of any discrepancy or change to the Internet
Draft, the definition here takes precedence.

- Itis not necessary to use the clear_cofactor function specified in the Internet Draft, because Pallas and Vesta
(and therefore iso-Pallas and iso-Vesta) are prime-order curves.

- The above description incorporates optimizations from [WB2019] that avoid inversions and unnecessary
square tests in the computation of map_to_curve_simple_swu™>. In order to fully avoid inversions, the output
of map_to_curve_simple_swu*>® can be expressed in Jacobian coordinates, as can the input and output of
iso_map®. It is outside the scope of this document to describe Jacobian coordinates, but for example, the Fi,, 5
point with affine-short-Weierstrass coordinates (X,,m/Xdiv, ). has Jacobian coordinates (Xnum Xy : yexa, Xdiv)-

Note: The uses of GroupHash” for DiversifyHash®* "™ and of both GroupHash” and GroupHash" to generate indepen-
dent bases, need a random oracle. The hash_to_curve algorithm in [ID-hashtocurve] is designed to be indifferentiable
from a random oracle (in the framework of [MRH2003)), given that XMD:BLAKE2b satisfies the requirements of
[ID-hashtocurve, section 5.5.4]. The security of the Brier et al. construction on which this algorithm is based is
analysed in [FFSTV2013] and [KT2015], with a verified proof in [BGHOZ2013].

5.4.10 Zero-Knowledge Proving Systems

5.4.101 BCTV14

Before Sapling activation, Zcash uses zk-SNARKs generated by a fork of libsnark [Zcash-libsnark] with the BCTV14
proving system described in [BCTV2014a], which is a modification of the systems in [PHGR2013] and [BCGTV2013].

ABCTV14 proof comprises (14 : G, 74 : GV*, 7y : GO, mpy : GO e : GOl : G0 e 1 GOy 2 GO0
It is computed as described in [BCTV2014a, Appendix B], using the pairing parameters specified in §5.4.9.1 ‘BN-254’
onp.97.

Note: Many details of the proving system are beyond the scope of this protocol document. For example, the
quadratic constraint program verifying the JoinSplit statement, or its translation to a Quadratic Arithmetic Program
[BCTV2014a, section 2.3], are not specified in this document. In 2015, Bryan Parno found a bug in this transla-
tion, which is corrected by the libsnark implementationz [WCBTV2015] [Parno2015] [BCTV2014a, Remark 2.5]. In
practice it will be necessary to use the specific proving and verifying keys that were generated for the Zcash
production block chain, given in §5.7 ‘BCTV14 zk-SNARK Parameters’ on p.117, together with a proving system
implementation that is interoperable with the Zcash fork of libsnark, to ensure compatibility.

Vulnerability disclosure:  BCTV14 is subject to a security vulnerability, separate from [Parno2015], that could allow
violation of Knowledge Soundness (and Soundness) [CVE-2019-7167] [SWB2019] [Gabizon2019]. The consequence
for Zcash is that balance violation could have occurred before activation of the Sapling network upgrade, although
there is no evidence of this having happened. Use of the vulnerability to produce false proofs is believed to have
been fully mitigated by activation of Sapling. The use of BCTV14 in Zcash is now limited to verifying proofs that
were made prior to the Sapling network upgrade.

Due to this issue, new forks of Zcash MUST NOT use BCTV14, and any other users of the Zcash protocol SHOULD
discontinue use of BCTV14 as soon as possible.

12Comfusingly, the bug found by Bryan Parno was fixed in libsnark in 2015, but that fix was incompletely described in the May 2015 update
[BCTV2014a-old, Theorem 2.4]. It is described completely in [BCTV2014a, Theorem 2.4] and in [Gabizon2019].
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The vulnerability does not affect the Zero Knowledge property of the scheme (as described in any version of
[BCTV2014a] or as implemented in any version of libsnark that has been used in Zcash), even under subversion of
the parameter generation [BGG2017, Theorem 4.10].

[Sapling onward] An implementation of Zcash that checkpoints on a block after Sapling MAY choose to skip
verification of BCTV14 proofs. Note that in §3.3 The Block Chain’ on p.16, there is a requirement that a full
validator that potentially risks Mainnet funds or displays Mainnet transaction information to a user MUST do so
only for a block chain that includes the activation block of the most recent settled network upgrade, with its known
block hash as specified in § 3.12 ‘Mainnet and Testnet’ on p.21. Since the most recent settled network upgrade is
after the Sapling network upgrade, this mitigates the potential risks due to skipping BCTV14 proof verification.

Encoding of BCTV14 Proofs

A BCTV14 proof is encoded by concatenating the encodings of its elements; for the BN-254 pairing this is:

264-bit 7, | 264-bit 74 520-bit 264-bit 7 | 264-bit 1o | 264-bit /s | 264-bit 1 | 264-bit 7y

The resulting proof size is 296 bytes.

In addition to the steps to verify a proof given in [BCTV2014a, Appendix B], the verifier MUST check, for the encoding
of each element, that:

- the lead byte is of the required form;
- the remaining bytes encode a big-endian representation of an integer in {0.. gs—1} or (for m3) {0.. &’ —1};

- the encoding represents a point in (GY)* or (for 7p) Gg)*, including checking that it is of order r¢ in the latter
case.

5.4.10.2 Grothl6

After Sapling activation, Zcash uses zk-SNARKs with the Groth16 proving system described in [BGM2017], which is
a modification of the system in [Groth2016]. An independent security proof of this system and its setup is given in
[Maller2018].

Groth16 zk-SNARK proofs are used in transaction version 4 and later (§ 71 “Transaction Encoding and Consensus’
on p.119), both in Sprout joinSplit descriptions and in Sapling Spend descriptions and Output descriptions. They
are generated by the bellman library [Bowe-bellman].

A Groth16 proof comprises (4 ¢ SU7*, w5 : Y%, 7o 2 S17%). It is computed as described in [Groth2016, section 3.2],
using the pairing parameters specified in §5.4.9.2 ‘BLS12-381" on p. 99. The proof elements are in a different order
to the presentation in [Groth2016].

Note: The quadratic constraint programs verifying the Spend statement and Output statement are described
in Appendix § A ‘Circuit Design’ on p.193. However, many other details of the proving system are beyond the
scope of this protocol document. For example, certain details of the translations of the Spend statement and
Output statement to Quadratic Arithmetic Programs are not specified in this document. In practice it will be
necessary to use the specific proving and verifying keys generated for the Zcash production block chain (see §5.8
‘Groth16 zk-SNARK Parameters’ on p.117), and a proving system implementation that is interoperable with the
bellman library used by Zcash, to ensure compatibility.

Encoding of Groth16 Proofs

A Groth16 proof is encoded by concatenating the encodings of its elements; for the BLS12-381 pairing this is:

384-bit 74 768-bit 384-bit 7

The resulting proof size is 192 bytes.
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In addition to the steps to verify a proof given in [Groth2016], the verifier MUST check, for the encoding of each
element, that:

- the leading bitfield is of the required form:;

- the remaining bits encode a big-endian representation of an integer in {0.. gs—1} or (in the case of ) two
integers in that range;

- the encoding represents a point in S{* or (in the case of 73) S{”*, including checking that it is of order rg in
each case.

5.4.10.3 Halo?2

For Orchard Action descriptions in version 5 transactions, Zcash uses zk-SNARKs with the Halo 2 proving system
described in [Zcash-halo2].

Encoding of Halo 2 Proofs

Halo 2 proofs are defined as byte sequences, and so the encoding is the proof itself.

5.5 Encodings of Note Plaintexts and Memo Fields

As explained in § 3.2.1 ‘Note Plaintexts and Memo Fields’ on p.14, transmitted notes are stored on the block chain
in encrypted form. The components and usage of note plaintexts, and which keys they are encrypted to, are defined
in that section.

The encoding of a Sprout note plaintext consists of:

8-bit leadByte| 64-bitv 256-bit p 256-bit rem memo (512 bytes)

- A byte, 0x00, indicating this version of the encoding of a Sprout note plaintext.
- 8 bytes specifying v.

- 32 bytes specifying p.

- 32 bytes specifying rcm.

- 512 bytes specifying memo.

The encoding of a Sapling or Orchard note plaintext consists of:

8-bit leadByte 88-bit d 64-bitv | 256-bit rseed memo (512 bytes)

- Abyte, 0x01 or 0x02 as specified in § 3.2.1 ‘Note Plaintexts and Memo Fields’ on p.14, indicating this version
of the encoding of a Sapling or Orchard note plaintext.

- 11 bytes specifying d.

- 8 bytes specifying v.

- 32 bytes specifying rseed.

- 512 bytes specifying memo.
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5.6 Encodings of Addresses and Keys

This section describes how Zcash encodes shielded payment addresses, incoming viewing keys, and spending keys.

Addresses and keys can be encoded as a byte sequence; this is called the raw encoding. For Sprout shielded
payment addresses, this byte sequence can then be further encoded using Base58Check. The Base58Check layer is
the same as for upstream Bitcoin addresses [Bitcoin-Base58].

For Sapling-specific key and address formats, Bech32 [ZIP-173] is used instead of Base58Check.

Non-normative note: ZIP 173 is similar to Bitcoin's BIP 173, except for dropping the limit of 90 characters on an
encoded Bech32 string (which does not hold for Sapling viewing keys, for example), and requirements specific to
Bitcoin's Segwit addresses.

Orchard introduces a new address format called a unified payment address. This can encode an Orchard ad-
dress, but also a Sapling address, a transparent address, and potentially future address formats, all in the same
unified payment address. It is RECOMMENDED to use unified payment addresses for all new applications, unless
compatibility with software that only accepts previous address formats is required.

Unified payment addresses and Orchard spending keys are encoded with Bech32m [BIP-350] rather than Bech32.

Payment addresses MAY be encoded as QR codes; in this case, the RECOMMENDED format for a Sapling payment
address is the Bech32 form converted to uppercase, using the Alphanumeric mode [ISO2015, sections 7.3.4 and 7.4.4].
Similarly, the RECOMMENDED format for a unified payment address is the Bech32m form converted to uppercase,
using the Alphanumeric mode.

5.6.1 Transparent Encodings
5.6.1.1 Transparent Addresses

Transparent addresses are either P2SH (Pay to Script Hash) addresses [BIP-13] or P2PKH (Pay to Public Key Hash)
addresses [Bitcoin-P2PKH].

The raw encoding of a P2SH address consists of:

| 8-bitoxic |  s-bit 0xBD 160-bit script hash

- Two bytes [0x1C, 0xBD], indicating this version of the raw encoding of a P2SH address on Mainnet. (Addresses
on Testnet use [0x1C, 0xBA] instead.)

- 20 bytes specifying a script hash [Bitcoin-P2SH].

The raw encoding of a P2PKH address consists of:

’ 8-bit 0x1C | 8-bit 0xB8 160-bit validating key hash

- Two bytes [0x1C, 0xB8], indicating this version of the raw encoding of a P2PKH address on Mainnet. (Addresses
on Testnet use [0x1D, 0x25] instead.)

- 20 bytes specifying a validating key hash, which is a RIPEMD-160 hash [RIPEMD160] of a SHA-256 hash
[NIST2015] of a compressed ECDSA key encoding.

Notes:

- In Bitcoin a single byte is used for the version field identifying the address type. In Zcash two bytes are used.
For addresses on Mainnet, this and the encoded length cause the first two characters of the Base58Check
encoding to be fixed as “t3” for P2SH addresses, and as “t1” for P2PKH addresses. (This does not imply that a
transparent Zcash address can be parsed identically to a Bitcoin address just by removing the “t”.)

- Zcash does not yet support Hierarchical Deterministic Wallet addresses [BIP-32].
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5.6.1.2 Transparent Private Keys

These are encoded in the same way as in Bitcoin [Bitcoin-Base58], for both Mainnet and Testnet.

5.6.2 Sprout Encodings

5.6.2.1 Sprout Payment Addresses

Let KA>“" be as defined in §5.4.5.1 ‘Sprout Key Agreement’ on p. 86.

Sprout

A Sprout shielded payment address consists of a Bl | and pkene @ KASPU Public.

apk is a SHA256Compress output. pke, is a KASP™Ut pyblic key, for use with the encryption scheme defined in §4.19
‘In-band secret distribution (Sprout)’ on p.63. These components are derived from a spending key as described
in §4.2.1 ‘Sprout Key Components’ on p. 35.

The raw encoding of a Sprout shielded payment address consists of:

8-bit 0x16 | 8-bit 0x9A | 256-bit ay 256-bit pkonc

- Two bytes [0x16, 0x94], indicating this version of the raw encoding of a Sprout shielded payment address on
Mainnet. (Addresses on Testnet use [0x16, 0xB6] instead.)

- 32 bytes specifying a.
- 32 bytes specifying pke,., using the normal encoding of a Curve25519 public key [Bernstein2006].

Note:  For addresses on Mainnet, the lead bytes and encoded length cause the first two characters of the
Base58Check encoding to be fixed as “zc”. For Testnet, the first two characters are fixed as “zt”.

5.6.2.2 Sprout Incoming Viewing Keys

Let KASP®“* be as defined in §5.4.5.1 ‘Sprout Key Agreement’ on p. 86.

Sprout

A Sprout incoming viewing key consists of ay, : B% | and skene ¢ KASP™" Private.

apk is a SHA256Compress output. ske, is a KASP™" Private key, for use with the encryption scheme defined in §4.19
‘In-band secret distribution (Sprout)’ on p.63. These components are derived from a spending key as described
in §4.2.1 ‘Sprout Key Components’ on p. 35.

The raw encoding of a Sprout incoming viewing key consists of:

8-bit 0xA8 | 8-bit 0xAB | 8-bit 0xD3 | 256-bit ay 256-bit sken

- Three bytes [0xA8, 0xAB, 0xD3], indicating this version of the raw encoding of a Zcash incoming viewing key
on Mainnet. (Addresses on Testnet use [0xA8, 0xAC, 0x0C| instead.)

- 32 bytes specifying a.
- 32 bytes specifying ske,., using the normal encoding of a Curve25519 private key [Bernstein2006].

skene MUST be “clamped” using KASP™®" FormatPrivate as specified in § 4.2.1 ‘Sprout Key Components’ on p. 35. That
is, a decoded incoming viewing key MUST be considered invalid if sk, # KA®P"" FormatPrivate(skenc ).

KASP™“t FormatPrivate is defined in § 5.4.5.1 ‘Sprout Key Agreement’ on p. 86.

Note: For addresses on Mainnet, the lead bytes and encoded length cause the first four characters of the
Base58Check encoding to be fixed as “ZiVK". For Testnet, the first four characters are fixed as “ZiVt”.
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5.6.2.3 Sprout Spending Keys

A Sprout spending key consists of ag, which is a sequence of 252 bits (see §4.2.1 ‘Sprout Key Components’ on
p. 35).

The raw encoding of a Sprout spending key consists of:

| 8-bit 0xAB | 8-bit 0x36 | [0]" | 252-bit ag,

- Two bytes [0xAB, 0x36], indicating this version of the raw encoding of a Zcash spending key on Mainnet.
(Addresses on Testnet use [0xAC, 0x08] instead.)

- 32 bytes: 4 zero padding bits and 252 bits specifying ag.

The zero padding occupies the most significant 4 bits of the third byte.

Notes:
- If an implementation represents a internally as a sequence of 32 bytes with the 4 bits of zero padding intact,
it will be in the correct form for use as an input to PRF*", PRF"™P°"* and PRFP* without need for bit-shifting.

- Foraddresses on Mainnet, the lead bytes and encoded length cause the first two characters of the Base58Check
encoding to be fixed as “SK”. For Testnet, the first two characters are fixed as “ST".

5.6.3 Sapling Encodings

5.6.3.1 Sapling Payment Addresses

Let KA®*P"€ e as defined in §5.4.5.3 ‘Sapling Key Agreement’ on p. 87.
Let {4 be as defined in § 5.3 ‘Constants’ on p.72.
Let J™, abst;, and repr; be as defined in §5.4.9.3 Jubjub’ on p.100.

Let LEBS20SP : (£ : N) x B} — Bylne(t/8)] he a5 defined in § 5.1 Integers, Bit Sequences, and Endianness’ on
p-71

A Sapling shielded payment address consists of d : B and pky : KAS*P"€ PublicPrimeSubgroup.

pkyq is an encoding of a KAS*P'™8 public key of type KAS*P'"& PublicPrimeSubgroup, for use with the encryption scheme
defined in §4.20 ‘In-band secret distribution (Sapling and Orchard)’ on p.65. d is a diversifier. These compo-
nents are derived as described in §4.2.2 ‘Sapling Key Components’ on p. 35.

The raw encoding of a Sapling shielded payment address consists of:

LEBS20SP4(d) | LEBS20SP.s4 (repr; (pkg)) \

- 11 bytes specifying d.
- 32 bytes specifying the ctEdwards compressed encoding of pky (see §5.4.9.3 ‘Jubjub’ on p.100).

When decoding the representation of pky, the address MUST be considered invalid if absty returns L.

[ZIP-216] specifies that the address MUST also be considered invalid if the resulting pky is not in the prime-order

subgroup I, orifit is a non-canonical encoding as defined in §4.1.9 ‘Represented Group’ on p. 31. This MAY be
enforced in advance of activation of NUS5.

For addresses on Mainnet, the Human-Readable Part (as defined in [ZIP-173]) is “zs”. For addresses on Testnet, the
Human-Readable Part is “ztestsapling”.
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5.6.3.2 Sapling Incoming Viewing Keys

Let KA®*P"€ he as defined in §5.4.5.3 ‘Sapling Key Agreement’ on p. 87.

Let (22" be as defined in §5.3 ‘Constants’ on p.72.

Saplin,
A Sapling incoming viewing key consists of ivk : {0 .. 9bik " 1}.

ivk is a KA®®'"8 Private key (restricted to £22""bits), derived as described in §4.2.2 ‘Sapling Key Components’ on
p. 35. It is used with the encryption scheme defined in §4.20 In-band secret distribution (Sapling and Orchard)’
on p. 65.

The raw encoding of a Sapling incoming viewing key consists of:

] 9256-bit ivk

- 32 bytes (little-endian) specifying ivk, padded with zeros in the most significant bits.

Saplin,

ivk MUST be in the range {0 .. ol 1} as specified in § 4.2.2 ‘Sapling Key Components’ on p.35. That is, a decoded
incoming viewing key MUST be considered invalid if ivk is not in this range.

For incoming viewing keys on Mainnet, the Human-Readable Part is “zivks”. For incoming viewing keys on Testnet,
the Human-Readable Part is “zivktestsapling”.

5.6.3.3 Sapling Full Viewing Keys

Let KAS*P"€ e a5 defined in §5.4.5.3 ‘Sapling Key Agreement’ on p. 87.
A Sapling full viewing key consists of ak : J % nk : I, and ovk : BYew/8]

ak and nk are points on the Jubjub curve (see §5.4.9.3 ‘Jubjub’ on p.100). They are derived as described in §4.2.2
‘Sapling Key Components’ on p. 35.

The raw encoding of a Sapling full viewing key consists of:

LEBS20SPy56 (repr;(ak)) | LEBS20SPy56 (repry(nk)) | 32-byte ovk

- 32 bytes specifying the ctEdwards compressed encoding of ak (see §5.4.9.3 ‘Jubjub’ on p.100).

- 32 bytes specifying the ctEdwards compressed encoding of nk.

- 32 bytes specifying the outgoing viewing key ovk.
When decoding this representation, the key MUST be considered invalid if abst; returns L for either ak or nk, or if
ak ¢ JO* orifnk ¢ J©.

For full viewing keys on Mainnet, the Human-Readable Part is “zviews”. For full viewing keys on Testnet, the
Human-Readable Part is “zviewtestsapling”.

5.6.3.4 Sapling Spending Keys

A Sapling spending key consists of sk : B! (see §4.2.2 ‘Sapling Key Components’ on p-35).

The raw encoding of a Sapling spending key consists of:

LEBS20SP.s(sk)

- 32 bytes specifying sk.

For spending keys on Mainnet, the Human-Readable Part is “secret-spending-key-main”. For spending keys on
Testnet, the Human-Readable Part is “secret-spending-key-test”.
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5.6.4 Unified and Orchard Encodings
5.6.4.1 Unified Payment Addresses and Viewing Keys

Rather than defining a Bech32 string encoding of Orchard shielded payment addresses, we instead define, in
[Z1P-316], a unified payment address format that is able to encode a set of payment addresses of different types. This
enables the consumer of an address to choose the best address type it supports, providing a better user experience
as new formats are added in the future.

Similarly, unified incoming viewing keys and unified full viewing keys are defined to encode sets of incoming
viewing keys and full viewing keys respectively.

Since [ZIP-316] includes a full specification of encoding, decoding, and other processing of unified payment
addresses, unified incoming viewing keys, and unified full viewing keys, we give only a summary here.

A unified payment address includes zero or one address of each type in the following Priority List:
- typecode 0x03 - §5.6.4.2 ‘Orchard Raw Payment Addresses’ on p.115;
- typecode 0x02 - §5.6.3.1 ‘Sapling Payment Addresses’ on p.113;
- typecode 0x01 - transparent P2SH address, or typecode 0x00 - transparent P2PKH address.

with the restrictions that there MUST be at least one shielded payment address (typecodes > 0x02), and that both
P2SH and P2PKH cannot be present.

When sending a payment, the consumer of a unified payment address MUST use the most preferred address
type that it supports from the set, i.e. the first in the above list. See [ZIP-316] for additional requirements, and for
discussion of unified incoming viewing keys and unified full viewing keys.

Note that there is intentionally no typecode defined for a Sprout shielded payment address (or Sprout viewing
keys). Since it is no longer possible (since activation of [ZIP-211] in the Canopy network upgrade) to send funds into
the Sprout chain value pool, this would not be generally useful.

The format uses Bech32m [BIP-350] (ignoring any length restrictions) for the checksum algorithm and string
encoding. This is chosen over Bech32 in order for the checksum to better handle variable-length inputs.

A “jumbling” algorithm is used in order to mitigate address replacement attacks given that a user might only check
part of the address. See [ZIP-316] for full details.

5.6.4.2 Orchard Raw Payment Addresses
Let KA° " he as defined in §5.4.5.5 ‘Orchard Key Agreement’ on p. 88.

An Orchard shielded payment address consists of d : B/ and pky : KA?" public,

pkq is an encoding of a KA®™"™ public key of type KA®™"™ Public, for use with the encryption scheme defined in
§4.20 ‘In-band secret distribution (Sapling and Orchard)’ on p.65. d is a sequence of 11 bytes. These compo-
nents are derived as described in §4.2.3 ‘Orchard Key Components’ on p. 37.

The raw encoding of an Orchard shielded payment address consists of:

LEBS20SP 4 (d) | LEBS20SP,5 (reprs(pky)) \

- 11 bytes specifying d.
- 32 bytes specifying the short Weierstrass compressed encoding of pkq (see §5.4.9.6 ‘Pallas and Vesta’ on p.103).

When decoding the representation of pky, the address MUST be considered invalid if abstp returns L or Op.

There is no Bech32[m] encoding defined for an individual Orchard shielded payment address; instead use a unified
payment address as defined in [ZIP-316].
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5.6.4.3 Orchard Raw Incoming Viewing Keys
Let KA°" be as defined in §5.4.5.5 ‘Orchard Key Agreement’ on p. 88.

An Orchard incoming viewing key consists of a diversifier key dk, and a KA®™"™™ Private key ivk restricted to the
range {1..¢gp — 1}. It is derived as described in §4.2.3 ‘Orchard Key Components’ on p.37, and is used with the
encryption scheme defined in §4.20 ‘In-band secret distribution (Sapling and Orchard)’ on p.65.

Let I2LEOSP be as defined in § 5.1 Integers, Bit Sequences, and Endianness’ on p.71.

The raw encoding of an Orchard incoming viewing key consists of:

] dk I2LEOSP 5 (ivk)

- 32 bytes specifying dk.
- 32 bytes (little-endian) specifying ivk.

ivk MUST be in the range {1.. ¢p — 1} as specified in §4.2.3 ‘Orchard Key Components’ on p.37. That is, a decoded
incoming viewing key MUST be considered invalid if ivk is not in this range.

There is no Bech32[m] encoding defined for an individual Orchard incoming viewing key; instead use a unified
incoming viewing key as defined in [ZIP-316].

5.6.4.4 Orchard Raw Full Viewing Keys

Let KA%" " be as defined in §5.4.5.5 ‘Orchard Key Agreement’ on p.88.

Let Extractp be as defined in § 5.4.9.7 ‘Coordinate Extractor for Pallas’ on p.104.
An Orchard full viewing key consists of ak : {0..gp — 1}, nk : F,_, and rivk : I, .

ak s the Spend validating key, aresult of applying Extractp to a point on the Pallas curve (see § 5.4.9.6 ‘Pallas and Vesta’
on p.103). nk is the nullifier deriving key, a field element in F, . rivk is the Commit™* randomness, a field element in
I, . They are derived as described in §4.2.3 ‘Orchard Key Components’ on p.37.

Let I2LEOSP be as defined in § 5.1 Integers, Bit Sequences, and Endianness’ on p.71.

The raw encoding of an Orchard full viewing key consists of:

I2LEOSP 554 (ak) | I2LEOSP 54 (nk) | I2LEOSP g6 (rivk) \

- 32 bytes (little-endian) specifying ak.
- 32 bytes (little-endian) specifying nk.
- 32 bytes (little-endian) specifying rivk.
When decoding this representation, the key MUST be considered invalid if ak, nk, or rivk are not canonically encoded

elements of their respective fields, or if ak is not a valid Pallas z-coordinate, or if either the external or internal
incoming viewing keys derived as specified in §4.2.3 ‘Orchard Key Components’ on p.37 are 0 or L.

There is no Bech32[m] encoding defined for an individual Orchard full viewing key; instead use a unified full
viewing key as defined in [ZIP-316].

5.6.4.5 Orchard Spending Keys

An Orchard spending key consists of sk : B! (see §4.2.3 ‘Orchard Key Components’ on p-37).
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The raw encoding of an Orchard spending key consists of:

LEBS2OSP256 (Sk)

- 32 bytes specifying sk.

Orchard spending keys are encoded using Bech32m (not Bech32).

For spending keys on Mainnet, the Human-Readable Part is “secret-orchard-sk-main”. For spending keys on
Testnet, the Human-Readable Part is “secret-orchard-sk-test”.

5.7 BCTV14 zk-SNARK Parameters

The SHA-256 hashes of the proving key and verifying key for the Sprout JoinSplit circuit, encoded in libsnark format,
are:

8bc20a7£013b2b58970cddd2e7ea028975¢c88ae7ceb9259ab344a16bc2cOeef? sprout-proving.key
4bd498daelaacfd8e98dc306338d017d9c08dd0918ead18172bd0aec2fcbdf82 sprout-verifying.key

These parameters were obtained by a multi-party computation described in [BGG-mpc| and [BGG2017]. They are
used only before Sapling activation. Due to the security vulnerability described in §5.4.10.1 ‘BCTV14’ on p.108,
it is not recommended to use these parameters in new protocols, and it is recommended to stop using them in
protocols other than Zcash where they are currently used.

5.8 Grothl6 zk-SNARK Parameters

bellman [Bowe-bellman] encodes the proving key and verifying key for a zk-SNARK circuit in a single parameters file.
The BLAKE2b-512 hashes of this file for the Sapling Spend circuit and Output circuit, and for the implementation
of the Sprout JoinSplit circuit used after Sapling activation, are respectively:

8270785a1a0d0bc77196£000ee6d221c9c9894£55307bd9357¢c3£0105d31cab3
991ab91324160d8£53e2bbd3c2633a6eb8bdf5205d822e7£3£73edac51b2b70c sapling-spend.params

657e3d38dbb5cb5e7dd2970e8b03d69b4787dd907285b5a7£0790dcc8072£60b
£593b32¢cc2d1c030e00ff5ae64bf84c5c3beb84ddc841d48264b4al171744d028 sapling-output.params

e9b238411bd6c0ecd791e9d04245ec350c9c5744£5610dfcce4365d5cadddfef
d5054e371842b3£88falb9d7e8e075249b3ebabd167£a8b0£3161292d36c180a sprout-grothl6.params

These parameters were obtained by a multi-party computation described in [BGM2017].

5.9 Randomness Beacon

Let URS := “096b36a5804bfacef1691e173c366a47ff5ba84a44f26ddd7e8d9f79d5b42df0".

(=
This value is used in the definition of GroupHash’ ~ in §5.4.9.5 ‘Group Hash into Jubjub’ on p.102, and in the
multi-party computation to obtain the Sapling parameters given in § 5.8 ‘Groth16 zk-SNARK Parameters’ on p.117.

It is derived as described in [Bowe2018]:

- Take the hash of the Bitcoin block at height 514200 in RPC byte order, i.e. the big-endian 32-byte representation
of 0x00000000000000000034b33e842ac1c50456abe5fa92b60£6b3df c5d247£7b58

- Apply SHA-256 2** times.

- Convert to a US-ASCII lowercase hexadecimal string.

Note: URS is a 64-byte US-ASCII string, i.e. the first byte is 0x30, not 0x09.
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6 Network Upgrades

Zcash launched with a protocol revision that we call Sprout.

A first upgrade, called Overwinter, activated on Mainnet on 26 June, 2018 at block height 347500 [Swihart2018]. Its
specifications are described in this document, [ZIP-201], [ZIP-202], [ZIP-203], and [ZIP-143].

A second upgrade, called Sapling, activated on Mainnet on 28 October, 2018 at block height 419200 [Hamdon2018].
Its specifications are described in this document, [ZIP-205], and [ZIP-243].

Athird upgrade, called Blossom, activated on Mainnet on 11 December, 2019 at block height 653600 [Zcash-Blossom].
Its specifications are described in this document, [ZIP-206], and [ZIP-208].

A fourth upgrade, called Heartwood, activated on Mainnet on 16 July, 2020 at block height 903000 [Zcash-Heartwd].
Its specifications are described in this document, [ZIP-250], [ZIP-213], and [ZIP-221].

A fifth upgrade, called Canopy, activated on Mainnet on 18 November, 2020 at block height 1046400 (coinciding
with the first block subsidy halving) [Zcash-Canopyl. Its specifications are described in this document, [ZIP-251],
[Z1P-207], [ZIP-211], [ZIP-212], [ZIP-214], and [ZIP-215]. Additional information and rationale is given in [ZIP-1014].

A sixth upgrade, called NUS5, activated on Mainnet on 31 May, 2022 at block height 1687104 [Zcash-Nu5]. Its specifi-
cations are described in this document, [ZIP-252], [ZIP-216], [ZIP-221], [ZIP-224], [ZIP-225], [ZIP-239], [ZIP-244], and
[ZIP-316], with updates to [ZIP-32], [ZIP-203], [ZIP-209], [ZIP-212], [ZIP-213], and [ZIP-221]. Additional information
and rationale is given in [Zcash-Orchard] and [Zcash-halo2].

This section summarizes the strategy for upgrading from Sprout to subsequent versions of the protocol (Overwinter,
Sapling, Blossom, Heartwood, Canopy, NUS5, and NU6), and for future upgrades.

The network upgrade mechanism is described in [ZIP-200].
Each network upgrade is introduced as a “bilateral consensus rule change”. In this kind of upgrade,
- there is an activation block height at which the consensus rule change takes effect;

- blocks and transactions that are valid according to the post-upgrade rules are not valid before the upgrade
block height;

- blocks and transactions that are valid according to the pre-upgrade rules are no longer valid at or after the
activation block height.

Full support for each network upgrade is indicated by a minimum version of the peer-to-peer protocol. At the
planned activation block height, nodes that support a given upgrade will disconnect from (and will not reconnect
to) nodes with a protocol version lower than this minimum. See [ZIP-201] for how this applies to the Overwinter
upgrade, for example.

This ensures that upgrade-supporting nodes transition cleanly from the old protocol to the new protocol. Nodes
that do not support the upgrade will find themselves on a network that uses the old protocol and is fully partitioned
from the upgrade-supporting network. This allows us to specify arbitrary protocol changes that take effect at a
given block height.

Note, however, that a block chain reorganization across the upgrade activation block height is possible. In the case
of such a reorganization, blocks at a height before the activation block height will still be created and validated
according to the pre-upgrade rules, and upgrade-supporting nodes MUST allow for this.
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7 Consensus Changes from Bitcoin

7.1 Transaction Encoding and Consensus

The Zcash transaction format up to and including transaction version 4 is as follows (this should be read in the

context of consensus rules later in the section):

Version*‘ Bytes Name Data Type Description
1.4 4 header uint32 Contains:
- fOverwintered flag (bit 31)
- version (bits 30..0) - transaction version.
3.4 4 nVersionGroupId uint32 Version group ID (nonzero).
1..4 Varies tx_in_count compactSize Number of transparent inputs.
1.4 Varies tx_in tx_in Transparent inputs, encoded as in Bitcoin.
1..4 Varies tx_out_count compactSize Number of transparent outputs.
1..4 Varies tx_out tx_out Transparent outputs, encoded as in Bitcoin.
1.4 4 lock_time uint32 Unix-epoch UTC time or block height, encoded as in
Bitcoin.
3.4 4 nExpiryHeight uint32 A block height after which the transaction will expire, or
0 to disable expiry. [ZIP-203]
4 8 valueBalanceSapling | int64 The net value of Sapling spends minus outputs.
4 Varies nSpendsSapling compactSize The number of Spend descriptions in vSpendsSapling.
4 384- vSpendsSapling SpendDescriptionV4 A sequence of Spend descriptions, encoded per §7.3
nSpendsSapling [nSpendsSapling] ‘Spend Description Encoding and Consensus’ on
p.125.
4 Varies nOutputsSapling compactSize The number of Output descriptions in vOutputsSapling.
4 948- vOutputsSapling OutputDescriptionV4 | Asequence of Output descriptions, encoded per § 7.4
nOutputsSapling [nOutputsSapling] ‘Output Description Encoding and Consensus’ on
p.126.
Varies nJoinSplit compactSize The number of JoinSplit descriptions in vJoinSplit.
1802- vJoinSplit JSDescriptionBCTVi4 | Asequence of JoinSplit descriptions using BCTV14
nJoinSplit [nJoinSplit] proofs, encoded per § 7.2
‘JoinSplit Description Encoding and Consensus’ on
p.125.
4 1698- vJoinSplit JSDescriptionGrothl6 | A sequence of JoinSplit descriptions using Groth16
nJoinSplit [nJoinSplit] proofs, encoded per § 7.2
‘JoinSplit Description Encoding and Consensus’ on
p.125.
2.4t 32 joinSplitPubKey byte[32] An encoding of a JoinSplitSig public validating key.
2..4¢% 64 joinSplitSig byte[64] A signature on a prefix of the transaction encoding,
validated using joinSplitPubKey as specified in §4.11
‘Non-malleability (Sprout)’ on p.50.
41 64 bindingSigSapling byte [64] A Sapling binding signature on the SIGHASH transaction
hash, validated as specified in §5.4.7.2
‘Binding Signature (Sapling and Orchard)’ on p.93.

l
1

Version constraints apply to the effectiveVersion, which is equal to min(2, version) when fOverwintered = 0 and
to version otherwise. If effectiveVersion > 5 once header has been parsed, the remainder of the transaction
encoding MUST be parsed according to the v5 format described in the next table. The consensus rules later in
this section specify constraints on nVersionGroupId depending on effectiveVersion.

The joinSplitPubKey and joinSplitSig fields are present if and only if effectiveVersion > 2 and nJoinSplit > 0.
bindingSigSapling is present if and only if effectiveVersion = 4 and nSpendsSapling + nOutputsSapling > 0.

Note that the valueBalanceSapling field is always present for these transaction versions.

Several Sapling fields have been renamed from previous versions of this specification:
valueBalance — valueBalanceSapling; nShieldedSpend — nSpendsSapling; vShieldedSpend — vSpendsSapling;
nShieldedOutput — nOutputsSapling; vShieldedOutput — vOutputsSapling; bindingSig — bindingSigSapling.
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The Zcash transaction format for transaction version 5 is as follows (this should be read in the context of consensus
rules later in the section):

Note ‘ Bytes ‘ Name Data Type Description
4 header uint32 Contains:
- fOverwintered flag (bit 31, always set)
- version (bits 30 ... 0) - transaction version.
4 nVersionGroupld uint32 Version group ID (nonzero).
4 nConsensusBranchId uint32 Consensus branch ID.
4 lock_time uint32 Unix-epoch UTC time or block height, encoded as in
Bitcoin .
4 nExpiryHeight uint32 A block height after which the transaction will expire, or 0
to disable expiry. [ZIP-203]
Varies tx_in_count compactSize Number of transparent inputs.
Varies tx_in tx_in Transparent inputs, encoded as in Bitcoin.
Varies tx_out_count compactSize Number of transparent outputs.
Varies tx_out tx_out Transparent outputs, encoded as in Bitcoin.
Varies nSpendsSapling compactSize The number of Spend descriptions in vSpendsSapling.
96- vSpendsSapling SpendDescriptionVb A sequence of Spend descriptions, encoded per §7.3
nSpendsSapling [nSpendsSapling] ‘Spend Description Encoding and Consensus’ on p.125.
Varies nOutputsSapling compactSize The number of Output descriptions in vOutputsSapling.
756- vOutputsSapling OutputDescriptionVb A sequence of Output descriptions, encoded per § 7.4
nOutputsSapling [nOutputsSapling] ‘Output Description Encoding and Consensus’ on p.126.
i 8 valueBalanceSapling int64 The net value of Sapling spends minus outputs.
i 32 anchorSapling byte[32] A root of the Sapling note commitment tree at some block
height in the past, LEBS20SP s (rt>*"8).
192 vSpendProofsSapling byte[192] Encodings of the zk-SNARK proofs for each Sapling Spend
nSpendsSapling [nSpendsSapling] description.
64- vSpendAuthSigsSapling | byte[64] Authorizing signatures for each Sapling Spend description.
nSpendsSapling [nSpendsSapling]
192- vOutputProofsSapling | byte[192] Encodings of the zk-SNARK proofs for each Sapling Output
nOutputsSapling [nOutputsSapling] description.
T 64 bindingSigSapling byte[64] A Sapling binding signature on the SIGHASH transaction
hash, validated per §5.4.7.2
‘Binding Signature (Sapling and Orchard)’ on p.93.
Varies nActionsOrchard compactSize The number of Action descriptions in vActionsOrchard.
820- vActionsOrchard ActionDescription A sequence of Action descriptions, encoded per § 7.5
nActionsOrchard [nActionsOrchard] “Action Description Encoding and Consensus’ on p.127.
§ 1 flagsOrchard byte Contains:
- enableSpendsQrchard flag (bit 0)
- enableOutputsOrchard flag (bit 1)
- Reserved, zeros (bits 2.. 7).
§ 8 valueBalanceOrchard int64 The net value of Orchard spends minus outputs.
§ 32 anchorOrchard byte[32] A root of the Orchard note commitment tree at some block
height in the past, LEBS20SP s (rt® ).
§ Varies sizeProofsOrchard compactSize The length of the aggregated zk-SNARK proof mzyaction-
Value is 2720 + 2272 - nActionsOrchard.
§ | sizeProofsOrchard | proofsOrchard byte[sizeProofsOrchard] | The aggregated zk-SNARK proof mzxaction (se€ §5.4.10.3
‘Halo 2’ on p. 110).
64- vSpendAuthSigsOrchard | byte[64] Authorizing signatures for each spend of an Orchard Action
nActionsOrchard [nActionsOrchard] description.
§ 64 bindingSigOrchard byte [64] An Orchard binding signature on the SIGHASH transaction
hash, validated per §5.4.7.2
‘Binding Signature (Sapling and Orchard)’ on p.93.

T The fields valueBalanceSapling and bindingSigSapling are present if and only if nSpendsSapling + nOutputsSapling > 0. If
valueBalanceSapling is not present, then v*2"*52Pi8 5 defined to be 0.

I The field anchorSapling is present if and only if nSpendsSapling > 0.

§ The fields flagsOrchard, valueBalanceOrchard, anchorOrchard, sizeProofsQOrchard, proofsOrchard, and bindingSigQOrchard are
present if and only if nActionsOrchard > 0. If valueBalanceOrchard is not present, then v*2"*%"" i defined to be 0.

Transaction version 5 does not support JoinSplit transfers. Several fields are reordered and/or renamed relative to prior versions.
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7.1.1 Transaction Identifiers

The transaction ID of a version 4 or earlier transaction is the SHA-256d hash of the transaction encoding in the
pre-v5 format described above.

The transaction ID of a version 5 transaction is as defined in [ZIP-244]. A v5 transaction also has a wtxid (used for
example in the peer-to-peer protocol) as defined in [ZIP-239].

7.1.2 Transaction Consensus Rules

Consensus rules:
- The transaction version number MUST be greater than or equal to 1.
- [Pre-Overwinter] The fOverwintered flag MUST NOT be set.
- [Overwinter onward] The fOverwintered flag MUST be set.
- [Overwinter onward] The version group ID MUST be recognized.

- [Overwinter only, pre-Sapling] The transaction version number MUST be 3, and the version group ID MUST
be 0x03C48270.

- [Sapling to Canopy inclusive, pre-NUS5] The transaction version number MUST be 4, and the version group
ID MUST be 0x892F2085.

- [NUS5 onward] The transaction version number MUST be 4 or 5. If the transaction version number is 4 then
the version group ID MUST be 0x892F2085. If the transaction version number is 5 then the version group ID
MUST be 0x26A7270A.

- [NUS5 onward] If effectiveVersion > 5, the nConsensusBranchId field MUST match the consensus branch 1D
used for SIGHASH transaction hashes, as specified in [ZIP-244].

- [Pre-Sapling] The encoded size of the transaction MUST be less than or equal to 100000 bytes.
. [NU5 onward] nSpendsSapling, nOutputsSapling, and nActionsOrchard MUST all be less than 2'°.

- [Pre-Sapling] If effectiveVersion = 1 or nJoinSplit = 0, then both tx_in_count and tx_out_count MUST be
nonzero.

- [Sapling onward] If effectiveVersion < 5, then at least one of tx_in_count, nSpendsSapling, and nJoinSplit
MUST be nonzero.

- [Sapling onward] If effectiveVersion < 5, then at least one of tx_out_count, nOutputsSapling, and nJoinSplit
MUST be nonzero.

- [NUS5 onward] If effectiveVersion > 5 then this condition MUST hold: tx_in_count > 0 or nSpendsSapling > 0
or (nActionsOrchard > 0 and enableSpendsOrchard = 1).

- [NU5 onward] If effectiveVersion > 5 then this condition MUST hold: tx_out_count > 0 ornOutputsSapling > 0
or (nActionsOrchard > 0 and enableOutputsOrchard = 1).

- [NU5 onward] If effectiveVersion > 5 and nActionsOrchard > 0, then at least one of enableSpendsOrchard and
enableOutputsOrchard MUST be 1.

- A transaction with one or more transparent inputs from coinbase transactions MUST have no transparent
outputs (i.e. tx_out_count MUST be 0). Inputs from coinbase transactions include Founders’ Reward outputs
and funding stream outputs.

- If effectiveVersion > 2 and nJoinSplit > 0, then:

- joinSplitPubKey MUST be a valid encoding (see §5.4.6 ‘Ed25519’ on p. 88) of an Ed25519 validating key.
- joinSplitSig MUST represent a valid signature under joinSplitPubKey of dataToBeSigned, as defined
in §4.11 ‘Non-malleability (Sprout)’ on p.50.
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- [Sapling onward] If effectiveVersion > 4 and nSpendsSapling + nOutputsSapling > 0, then:

- let bvk>*™™™8 and SigHash be as defined in §4.13 ‘Balance and Binding Signature (Sapling)’ on p.51;

- bindingSigSapling MUST represent a valid signature under the transaction binding validating key
bvk>*P"8 of SigHash — i.e. BindingSigsapl'“g.VaIidatebkaapling(SigHash, bindingSigSapling) = 1. [NU5 onward]
As specified in §5.4.7 ‘RedDSA, RedJubjub, and RedPallas’ on p. 90, the validation of the R component
of the signature changes to prohibit non-canonical encodings.

- [Sapling onward] If effectiveVersion = 4 and there are no Spend descriptions or Output descriptions, then
valueBalanceSapling MUST be 0.

- [NUS5 onward] If effectiveVersion > 5 and nActionsOrchard > 0, then:
- let bvk®™" and SigHash be as defined in §4.14 ‘Balance and Binding Signature (Orchard)’ on p.53;

- bindingSigOrchard MUST represent a valid signature under the transaction binding validating key

vk of SigHash — i.e. BindingSigorChard.VaIidatebvkorchm (SigHash, bindingSigOrchard) = 1. As specified
in §5.4.7 ‘RedDSA, RedJubjub, and RedPallas’ on p. 90, validation of the R component of the signature
prohibits non-canonical encodings.

- For the block at block height height:
- define the total output value of its coinbase transaction to be the total value in zatoshi of its transparent

‘ balanceSapli - balanceOrchard
outputs, minus v " IE minus v

- define the total input value of its coinbase transaction to be the value in zatoshi of the block subsidy,
plus the transaction fees paid by transactions in the block.

The total output value of a coinbase transaction MUST NOT be greater than its total input value.

- A coinbase transaction MUST NOT have any JoinSplit descriptions.

- A coinbase transaction MUST NOT have any Spend descriptions.

- [Pre-Heartwood]| A coinbase transaction MUST NOT have any Output descriptions.

- [NUS5 onward] In a version 5 coinbase transaction, the enableSpendsQOrchard flag MUST be 0.

- [NUS5 onward] In a version 5 transaction, the reserved bits 2.. 7 of the flagsOrchard field MUST be zero.

- A coinbase transaction for a block at block height greater than 0 MUST have a script that, as its first item,
encodes the block height height as follows. For height in the range {1..16}, the encoding is a single byte of
value 0x50 + height. Otherwise, let heightBytes be the signed little-endian representation of height, using the
minimum nonzero number of bytes such that the most significant byte is < 0x80. The length of heightBytes
MUST be in the range {1..5}. Then the encoding is the length of heightBytes encoded as one byte, followed
by heightBytes itself. This matches the encoding used by Bitcoin in the implementation of [BIP-34] (but the
description here is to be considered normative).

- A coinbase transaction script MUST have length in {2.. 100} bytes.
- A transparent input in a non-coinbase transaction MUST NOT have a null prevout.

- Every non-null prevout MUST point to a unique UTXO in either a preceding block, or a previous transaction
in the same block.

- A transaction MUST NOT spend a transparent output of a coinbase transaction from a block less than 100
blocks prior to the spend. Note that transparent outputs of coinbase transactions include Founders’ Reward
outputs and transparent funding stream outputs.

- A transaction MUST NOT spend an output of the genesis block coinbase transaction. (There is one such
zero-valued output, on each of Testnet and Mainnet.)

- [Overwinter to Canopy inclusive, pre-NUS5] nExpiryHeight MUST be less than or equal to 499999999.
- [NUS5 onward] nExpiryHeight MUST be less than or equal to 499999999 for non-coinbase transactions.

- [Overwinter onward] If a transaction is not a coinbase transaction and its nExpiryHeight field is nonzero,
then it MUST NOT be mined at a block height greater than its nExpiryHeight.
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- [NUS5 onward] The nExpiryHeight field of a coinbase transaction MUST be equal to its block height.
- [Sapling onward] valueBalanceSapling MUST be in the range { -MAX_MONEY .. MAX_MONEY}.

- [NUS5 onward] valueBalanceOrchard MUST be in the range { —MAX_MONEY .. MAX_MONEY} for version 5
transactions.

- [Heartwood onward] All Sapling and Orchard outputs in coinbase transactions MUST decrypt to a note
plaintext, i.e. the procedure in §4.20.3 Decryption using a Full Viewing Key (Sapling and Orchard)’ on
p. 68 does not return L, using a sequence of 32 zero bytes as the outgoing viewing key. (This implies that
before Canopy activation, Sapling outputs of a coinbase transaction MUST have note plaintext lead byte
equal to 0x01.)

- [Canopy onward] Any Sapling or Orchard output of a coinbase transaction decrypted to a note plaintext
according to the preceding rule MUST have note plaintext lead byte equal to 0x02. (This applies even during
the “grace period” specified in [ZIP-212].)

. TODO: Other rules inherited from Bitcoin.

The types specified in § 7.1 “Transaction Encoding and Consensus’ on p.119 are part of the consensus rules.

Consensus rules associated with each JoinSplit description (§7.2 ‘JoinSplit Description Encoding and Consensus’
on p.125), each Spend description (§7.3 ‘Spend Description Encoding and Consensus’ on p.125), each Output
description (§7.4 ‘Output Description Encoding and Consensus’ on p.126), and each Action description (§7.5
‘Action Description Encoding and Consensus’ on p.127) MUST also be followed.

Notes:

- Previous versions of this specification defined what is now the header field as a signed int32 field which was
required to be positive. The consensus rule that the fOverwintered flag MUST NOT be set before Overwinter
has activated, has the same effect.

- The semantics of transactions with version number not equal to 1, 2, 3, 4, or 5 is not currently defined.

- The exclusion of transactions with transaction version number greater than 2 is not a consensus rule before
Overwinter activation. Such transactions may exist in the block chain and MUST be treated identically to
version 2 transactions.

. [Overwinter onward] Once Overwinter has activated, limits on the maximum transaction version number
are consensus rules.

- The transaction version number 0x7FFFFFFF, and the version group ID OxFFFFFFFF, are reserved for use in
experimental extensions to transaction format or semantics on private testnets. They MUST NOT be used on
the Zcash Mainnet or Testnet.

- Note that a future upgrade might use any transaction version number or version group ID. It is likely that an
upgrade that changes the transaction version number or version group ID will also change the transaction
format, and software that parses transactions SHOULD take this into account.

- [Overwinter onward] The purpose of version group ID is to allow unambiguous parsing of “loose” transactions,
independent of the context of a block chain. Code that parses transactions is likely to be reused between
consensus branches as defined in [ZIP-200], and in that case the fOverwintered and version fields alone may
be insufficient to determine the format to be used for parsing.

- A transaction version number of 2 does not have the same meaning as in Bitcoin, where it is associated with
support for OP_CHECKSEQUENCEVERIFY as specified in [BIP-68]. Zcash was forked from Bitcoin Core v0.11.2 and
does not currently support BIP 68.

- [Sapling onward] Because coinbase transactions have no Spend descriptions, the valueBalanceSapling f